๐Ÿง 

mistral-7b-instruct-v0.1

by mistralai Model ID: hf-model--mistralai--mistral-7b-instruct-v0.1
FNI 11.2
Top 80%

"> > PRs to correct the tokenizer so that it gives 1-to-1 the same results as the reference implementati......"

๐Ÿ”— View Source
Audited 11.2 FNI Score
7.24B Params
4k Context
Hot 371.5K Downloads
8G GPU ~7GB Est. VRAM

โšก Quick Commands

๐Ÿฆ™ Ollama Run
ollama run mistral-7b-instruct-v0.1
๐Ÿค— HF Download
huggingface-cli download mistralai/mistral-7b-instruct-v0.1
๐Ÿ“ฆ Install Lib
pip install -U transformers
๐Ÿ“Š

Engineering Specs

โšก Hardware

Parameters
7.24B
Architecture
MistralForCausalLM
Context Length
4K
Model Size
41.0GB

๐Ÿง  Lifecycle

Library
-
Precision
float16
Tokenizer
-

๐ŸŒ Identity

Source
HuggingFace
License
Open Access
๐Ÿ’พ

Est. VRAM Benchmark

~6.7GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

๐Ÿ•ธ๏ธ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

๐Ÿ“ˆ Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

๐Ÿ”ฌTechnical Deep Dive

Full Specifications [+]
---

๐Ÿš€ What's Next?

โšก Quick Commands

๐Ÿฆ™ Ollama Run
ollama run mistral-7b-instruct-v0.1
๐Ÿค— HF Download
huggingface-cli download mistralai/mistral-7b-instruct-v0.1
๐Ÿ“ฆ Install Lib
pip install -U transformers
๐Ÿ–ฅ๏ธ

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
๐ŸŽฎ Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
๐ŸŽฎ Compatible

RTX 4070 Super

Mid 12GB VRAM
๐Ÿ’ป Compatible

RTX 4080 / Mac M3

High 16GB VRAM
๐Ÿš€ Compatible

RTX 3090 / 4090

Pro 24GB VRAM
๐Ÿ—๏ธ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
๐Ÿญ Compatible

A100 / H100

Datacenter 80GB VRAM
โ„น๏ธ

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

5,244 chars โ€ข Full Disclosure Protocol Active

ZEN MODE โ€ข README

Model Card for Mistral-7B-Instruct-v0.1

Encode and Decode with `mistral_common`

from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
 
mistral_models_path = "MISTRAL_MODELS_PATH"
 
tokenizer = MistralTokenizer.v1()
 
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
 
tokens = tokenizer.encode_chat_completion(completion_request).tokens

Inference with `mistral_inference`

from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate

model = Transformer.from_folder(mistral_models_path)
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)

result = tokenizer.decode(out_tokens[0])

print(result)

Inference with hugging face `transformers`

from transformers import AutoModelForCausalLM
 
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model.to("cuda")
 
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)

# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())
print(result)

[!TIP] PRs to correct the transformers tokenizer so that it gives 1-to-1 the same results as the mistral_common reference implementation are very welcome!


The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.

For full details of this model please read our paper and release blog post.

Instruction format

In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.

E.g.

text = "[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! "
"[INST] Do you have mayonnaise recipes? [/INST]"

This format is available as a chat template via the apply_chat_template() method:

from transformers import AutoModelForCausalLM, AutoTokenizer

device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")

messages = [
    {"role": "user", "content": "What is your favourite condiment?"},
    {"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
    {"role": "user", "content": "Do you have mayonnaise recipes?"}
]

encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")

model_inputs = encodeds.to(device)
model.to(device)

generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])

Model Architecture

This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'mistral'

Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers

This should not be required after transformers-v4.33.4.

Limitations

The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lรฉlio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothรฉe Lacroix, William El Sayed.

๐Ÿ“ Limitations & Considerations

  • โ€ข Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • โ€ข VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • โ€ข FNI scores are relative rankings and may change as new models are added.
  • โš  License Unknown: Verify licensing terms before commercial use.
  • โ€ข Source: Unknown
๐Ÿ“œ

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__mistralai__mistral_7b_instruct_v0.1,
  author = {mistralai},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/mistralai/mistral-7b-instruct-v0.1}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
mistralai. (2026). undefined [Model]. Free2AITools. https://huggingface.co/mistralai/mistral-7b-instruct-v0.1
๐Ÿ”„ Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

๐Ÿ“Š FNI Methodology ๐Ÿ“š Knowledge Baseโ„น๏ธ Verify with original source

๐Ÿ›ก๏ธ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

๐Ÿ†” Identity & Source

id
hf-model--mistralai--mistral-7b-instruct-v0.1
author
mistralai
tags
transformerspytorchsafetensorsmistraltext-generationfinetunedmistral-commonconversationalarxiv:2310.06825base_model:mistralai/mistral-7b-v0.1base_model:finetune:mistralai/mistral-7b-v0.1license:apache-2.0text-generation-inferenceregion:us

โš™๏ธ Technical Specs

architecture
MistralForCausalLM
params billions
7.24
context length
4,096
vram gb
6.7
vram is estimated
true
vram formula
VRAM โ‰ˆ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

๐Ÿ“Š Engagement & Metrics

likes
1,815
downloads
371,519

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)