mistral-7b-instruct-v0.1
"> > PRs to correct the tokenizer so that it gives 1-to-1 the same results as the reference implementati......"
โก Quick Commands
ollama run mistral-7b-instruct-v0.1 huggingface-cli download mistralai/mistral-7b-instruct-v0.1 pip install -U transformers Engineering Specs
โก Hardware
๐ง Lifecycle
๐ Identity
Est. VRAM Benchmark
~6.7GB
* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.
๐ธ๏ธ Neural Mesh Hub
Interconnecting Research, Data & Ecosystem
๐ Core Ecosystem
๐ฌ Research & Data
๐ Interest Trend
Real-time Trend Indexing In-Progress
* Real-time activity index across HuggingFace, GitHub and Research citations.
๐ Semantic Keywords
No similar models found.
Social Proof
๐ฌTechnical Deep Dive
Full Specifications [+]โพ
๐ What's Next?
โก Quick Commands
ollama run mistral-7b-instruct-v0.1 huggingface-cli download mistralai/mistral-7b-instruct-v0.1 pip install -U transformers Hardware Compatibility
Multi-Tier Validation Matrix
RTX 3060 / 4060 Ti
RTX 4070 Super
RTX 4080 / Mac M3
RTX 3090 / 4090
RTX 6000 Ada
A100 / H100
Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.
README
Model Card for Mistral-7B-Instruct-v0.1
Encode and Decode with `mistral_common`
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
mistral_models_path = "MISTRAL_MODELS_PATH"
tokenizer = MistralTokenizer.v1()
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
tokens = tokenizer.encode_chat_completion(completion_request).tokens
Inference with `mistral_inference`
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
model = Transformer.from_folder(mistral_models_path)
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])
print(result)
Inference with hugging face `transformers`
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model.to("cuda")
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())
print(result)
[!TIP] PRs to correct the
transformerstokenizer so that it gives 1-to-1 the same results as themistral_commonreference implementation are very welcome!
The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.
For full details of this model please read our paper and release blog post.
Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
text = "[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! "
"[INST] Do you have mayonnaise recipes? [/INST]"
This format is available as a chat template via the apply_chat_template() method:
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Model Architecture
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
Troubleshooting
- If you see the following error:
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'mistral'
Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers
This should not be required after transformers-v4.33.4.
Limitations
The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lรฉlio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothรฉe Lacroix, William El Sayed.
5,244 chars โข Full Disclosure Protocol Active
Model Card for Mistral-7B-Instruct-v0.1
Encode and Decode with `mistral_common`
from mistral_common.tokens.tokenizers.mistral import MistralTokenizer
from mistral_common.protocol.instruct.messages import UserMessage
from mistral_common.protocol.instruct.request import ChatCompletionRequest
mistral_models_path = "MISTRAL_MODELS_PATH"
tokenizer = MistralTokenizer.v1()
completion_request = ChatCompletionRequest(messages=[UserMessage(content="Explain Machine Learning to me in a nutshell.")])
tokens = tokenizer.encode_chat_completion(completion_request).tokens
Inference with `mistral_inference`
from mistral_inference.transformer import Transformer
from mistral_inference.generate import generate
model = Transformer.from_folder(mistral_models_path)
out_tokens, _ = generate([tokens], model, max_tokens=64, temperature=0.0, eos_id=tokenizer.instruct_tokenizer.tokenizer.eos_id)
result = tokenizer.decode(out_tokens[0])
print(result)
Inference with hugging face `transformers`
from transformers import AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
model.to("cuda")
generated_ids = model.generate(tokens, max_new_tokens=1000, do_sample=True)
# decode with mistral tokenizer
result = tokenizer.decode(generated_ids[0].tolist())
print(result)
[!TIP] PRs to correct the
transformerstokenizer so that it gives 1-to-1 the same results as themistral_commonreference implementation are very welcome!
The Mistral-7B-Instruct-v0.1 Large Language Model (LLM) is a instruct fine-tuned version of the Mistral-7B-v0.1 generative text model using a variety of publicly available conversation datasets.
For full details of this model please read our paper and release blog post.
Instruction format
In order to leverage instruction fine-tuning, your prompt should be surrounded by [INST] and [/INST] tokens. The very first instruction should begin with a begin of sentence id. The next instructions should not. The assistant generation will be ended by the end-of-sentence token id.
E.g.
text = "[INST] What is your favourite condiment? [/INST]"
"Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen! "
"[INST] Do you have mayonnaise recipes? [/INST]"
This format is available as a chat template via the apply_chat_template() method:
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.1")
messages = [
{"role": "user", "content": "What is your favourite condiment?"},
{"role": "assistant", "content": "Well, I'm quite partial to a good squeeze of fresh lemon juice. It adds just the right amount of zesty flavour to whatever I'm cooking up in the kitchen!"},
{"role": "user", "content": "Do you have mayonnaise recipes?"}
]
encodeds = tokenizer.apply_chat_template(messages, return_tensors="pt")
model_inputs = encodeds.to(device)
model.to(device)
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
decoded = tokenizer.batch_decode(generated_ids)
print(decoded[0])
Model Architecture
This instruction model is based on Mistral-7B-v0.1, a transformer model with the following architecture choices:
- Grouped-Query Attention
- Sliding-Window Attention
- Byte-fallback BPE tokenizer
Troubleshooting
- If you see the following error:
Traceback (most recent call last):
File "", line 1, in
File "/transformers/models/auto/auto_factory.py", line 482, in from_pretrained
config, kwargs = AutoConfig.from_pretrained(
File "/transformers/models/auto/configuration_auto.py", line 1022, in from_pretrained
config_class = CONFIG_MAPPING[config_dict["model_type"]]
File "/transformers/models/auto/configuration_auto.py", line 723, in getitem
raise KeyError(key)
KeyError: 'mistral'
Installing transformers from source should solve the issue pip install git+https://github.com/huggingface/transformers
This should not be required after transformers-v4.33.4.
Limitations
The Mistral 7B Instruct model is a quick demonstration that the base model can be easily fine-tuned to achieve compelling performance. It does not have any moderation mechanisms. We're looking forward to engaging with the community on ways to make the model finely respect guardrails, allowing for deployment in environments requiring moderated outputs.
The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lรฉlio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothรฉe Lacroix, William El Sayed.
๐ Limitations & Considerations
- โข Benchmark scores may vary based on evaluation methodology and hardware configuration.
- โข VRAM requirements are estimates; actual usage depends on quantization and batch size.
- โข FNI scores are relative rankings and may change as new models are added.
- โ License Unknown: Verify licensing terms before commercial use.
- โข Source: Unknown
Cite this model
Academic & Research Attribution
@misc{hf_model__mistralai__mistral_7b_instruct_v0.1,
author = {mistralai},
title = {undefined Model},
year = {2026},
howpublished = {\url{https://huggingface.co/mistralai/mistral-7b-instruct-v0.1}},
note = {Accessed via Free2AITools Knowledge Fortress}
} AI Summary: Based on Hugging Face metadata. Not a recommendation.
๐ก๏ธ Model Transparency Report
Verified data manifest for traceability and transparency.
๐ Identity & Source
- id
- hf-model--mistralai--mistral-7b-instruct-v0.1
- author
- mistralai
- tags
- transformerspytorchsafetensorsmistraltext-generationfinetunedmistral-commonconversationalarxiv:2310.06825base_model:mistralai/mistral-7b-v0.1base_model:finetune:mistralai/mistral-7b-v0.1license:apache-2.0text-generation-inferenceregion:us
โ๏ธ Technical Specs
- architecture
- MistralForCausalLM
- params billions
- 7.24
- context length
- 4,096
- vram gb
- 6.7
- vram is estimated
- true
- vram formula
- VRAM โ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)
๐ Engagement & Metrics
- likes
- 1,815
- downloads
- 371,519
Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)