๐Ÿง 

mistral-7b-v0.1

by mistralai Model ID: hf-model--mistralai--mistral-7b-v0.1
FNI 6.7
Top 80%

"The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested. For full details of this m......"

๐Ÿ”— View Source
Audited 6.7 FNI Score
7.24B Params
4k Context
Hot 380.7K Downloads
8G GPU ~7GB Est. VRAM

โšก Quick Commands

๐Ÿฆ™ Ollama Run
ollama run mistral-7b-v0.1
๐Ÿค— HF Download
huggingface-cli download mistralai/mistral-7b-v0.1
๐Ÿ“ฆ Install Lib
pip install -U transformers
๐Ÿ“Š

Engineering Specs

โšก Hardware

Parameters
7.24B
Architecture
MistralForCausalLM
Context Length
4K
Model Size
41.0GB

๐Ÿง  Lifecycle

Library
-
Precision
float16
Tokenizer
-

๐ŸŒ Identity

Source
HuggingFace
License
Open Access
๐Ÿ’พ

Est. VRAM Benchmark

~6.7GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

๐Ÿ•ธ๏ธ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

๐Ÿ”ฌ

๐Ÿ”ฌ Research & Data

๐Ÿ“ˆ Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

๐Ÿ”ฌTechnical Deep Dive

Full Specifications [+]
---

๐Ÿš€ What's Next?

โšก Quick Commands

๐Ÿฆ™ Ollama Run
ollama run mistral-7b-v0.1
๐Ÿค— HF Download
huggingface-cli download mistralai/mistral-7b-v0.1
๐Ÿ“ฆ Install Lib
pip install -U transformers
๐Ÿ–ฅ๏ธ

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
๐ŸŽฎ Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
๐ŸŽฎ Compatible

RTX 4070 Super

Mid 12GB VRAM
๐Ÿ’ป Compatible

RTX 4080 / Mac M3

High 16GB VRAM
๐Ÿš€ Compatible

RTX 3090 / 4090

Pro 24GB VRAM
๐Ÿ—๏ธ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
๐Ÿญ Compatible

A100 / H100

Datacenter 80GB VRAM
โ„น๏ธ

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

Model Card for Mistral-7B-v0.1

The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.

For full details of this model please read our paper and release blog post.

Model Architecture

Mistral-7B-v0.1 is a transformer model, with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
KeyError: 'mistral'
  • Or:
NotImplementedError: Cannot copy out of meta tensor; no data!

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

Notice

Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lรฉlio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothรฉe Lacroix, William El Sayed.

ZEN MODE โ€ข README

Model Card for Mistral-7B-v0.1

The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters. Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.

For full details of this model please read our paper and release blog post.

Model Architecture

Mistral-7B-v0.1 is a transformer model, with the following architecture choices:

  • Grouped-Query Attention
  • Sliding-Window Attention
  • Byte-fallback BPE tokenizer

Troubleshooting

  • If you see the following error:
KeyError: 'mistral'
  • Or:
NotImplementedError: Cannot copy out of meta tensor; no data!

Ensure you are utilizing a stable version of Transformers, 4.34.0 or newer.

Notice

Mistral 7B is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lรฉlio Renard Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothรฉe Lacroix, William El Sayed.

๐Ÿ“ Limitations & Considerations

  • โ€ข Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • โ€ข VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • โ€ข FNI scores are relative rankings and may change as new models are added.
  • โš  License Unknown: Verify licensing terms before commercial use.
  • โ€ข Source: Unknown
๐Ÿ“œ

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__mistralai__mistral_7b_v0.1,
  author = {mistralai},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/mistralai/mistral-7b-v0.1}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
mistralai. (2026). undefined [Model]. Free2AITools. https://huggingface.co/mistralai/mistral-7b-v0.1
๐Ÿ”„ Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

๐Ÿ“Š FNI Methodology ๐Ÿ“š Knowledge Baseโ„น๏ธ Verify with original source

๐Ÿ›ก๏ธ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

๐Ÿ†” Identity & Source

id
hf-model--mistralai--mistral-7b-v0.1
author
mistralai
tags
transformerspytorchsafetensorsmistraltext-generationpretrainedmistral-commonenarxiv:2310.06825license:apache-2.0text-generation-inferenceregion:us

โš™๏ธ Technical Specs

architecture
MistralForCausalLM
params billions
7.24
context length
4,096
vram gb
6.7
vram is estimated
true
vram formula
VRAM โ‰ˆ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

๐Ÿ“Š Engagement & Metrics

likes
4,018
downloads
380,656

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)