🧠

hunyuan-mt-7b

by tencent Model ID: hf-model--tencent--hunyuan-mt-7b
FNI 7.4
Top 90%

"🤗..."

🔗 View Source
Audited 7.4 FNI Score
8.03B Params
4k Context
9.8K Downloads
8G GPU ~8GB Est. VRAM

Quick Commands

🦙 Ollama Run
ollama run hunyuan-mt-7b
🤗 HF Download
huggingface-cli download tencent/hunyuan-mt-7b
📦 Install Lib
pip install -U transformers
📊

Engineering Specs

Hardware

Parameters
8.03B
Architecture
HunYuanDenseV1ForCausalLM
Context Length
4K
Model Size
15.1GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~7.3GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

🕸️ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

🔬Technical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

Quick Commands

🦙 Ollama Run
ollama run hunyuan-mt-7b
🤗 HF Download
huggingface-cli download tencent/hunyuan-mt-7b
📦 Install Lib
pip install -U transformers
🖥️

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
💻 Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
🏗️ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
ℹ️

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

7,271 chars • Full Disclosure Protocol Active

ZEN MODE • README


🤗 Hugging Face  |   🕹️ Demo  |   🤖 ModelScope

🖥️ Official Website  |   GitHub  |   Technical Report

Model Introduction

The Hunyuan Translation Model comprises a translation model, Hunyuan-MT-7B, and an ensemble model, Hunyuan-MT-Chimera. The translation model is used to translate source text into the target language, while the ensemble model integrates multiple translation outputs to produce a higher-quality result. It primarily supports mutual translation among 33 languages, including five ethnic minority languages in China.

Key Features and Advantages

  • In the WMT25 competition, the model achieved first place in 30 out of the 31 language categories it participated in.
  • Hunyuan-MT-7B achieves industry-leading performance among models of comparable scale
  • Hunyuan-MT-Chimera-7B is the industry’s first open-source translation ensemble model, elevating translation quality to a new level
  • A comprehensive training framework for translation models has been proposed, spanning from pretrain → cross-lingual pretraining (CPT) → supervised fine-tuning (SFT) → translation enhancement → ensemble refinement, achieving state-of-the-art (SOTA) results for models of similar size
  • 2025.9.1 We have open-sourced Hunyuan-MT-7B , Hunyuan-MT-Chimera-7B on Hugging Face.

 

模型链接

Model Name Description Download
Hunyuan-MT-7B Hunyuan 7B translation model 🤗 Model
Hunyuan-MT-7B-fp8 Hunyuan 7B translation model,fp8 quant 🤗 Model
Hunyuan-MT-Chimera Hunyuan 7B translation ensemble model 🤗 Model
Hunyuan-MT-Chimera-fp8 Hunyuan 7B translation ensemble model,fp8 quant 🤗 Model

Prompts

Prompt Template for ZH<=>XX Translation.


把下面的文本翻译成,不要额外解释。


Prompt Template for XX<=>XX Translation, excluding ZH<=>XX.


Translate the following segment into , without additional explanation.


Prompt Template for Hunyuan-MT-Chmeria-7B


Analyze the following multiple  translations of the  segment surrounded in triple backticks and generate a single refined  translation. Only output the refined translation, do not explain.

The  segment:
``````

The multiple  translations:
1. ``````
2. ``````
3. ``````
4. ``````
5. ``````
6. ``````

 

Use with transformers

First, please install transformers, recommends v4.56.0

pip install transformers==v4.56.0

The following code snippet shows how to use the transformers library to load and apply the model.

!!! If you want to load fp8 model with transformers, you need to change the name"ignored_layers" in config.json to "ignore" and upgrade the compressed-tensors to compressed-tensors-0.11.0.

we use tencent/Hunyuan-MT-7B for example

from transformers import AutoModelForCausalLM, AutoTokenizer
import os

model_name_or_path = "tencent/Hunyuan-MT-7B"

tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForCausalLM.from_pretrained(model_name_or_path, device_map="auto")  # You may want to use bfloat16 and/or move to GPU here
messages = [
    {"role": "user", "content": "Translate the following segment into Chinese, without additional explanation.\n\nIt’s on the house."},
]
tokenized_chat = tokenizer.apply_chat_template(
    messages,
    tokenize=True,
    add_generation_prompt=False,
    return_tensors="pt"
)

outputs = model.generate(tokenized_chat.to(model.device), max_new_tokens=2048)
output_text = tokenizer.decode(outputs[0])

We recommend using the following set of parameters for inference. Note that our model does not have the default system_prompt.

{
  "top_k": 20,
  "top_p": 0.6,
  "repetition_penalty": 1.05,
  "temperature": 0.7
}

Supported languages:

Languages Abbr. Chinese Names
Chinese zh 中文
English en 英语
French fr 法语
Portuguese pt 葡萄牙语
Spanish es 西班牙语
Japanese ja 日语
Turkish tr 土耳其语
Russian ru 俄语
Arabic ar 阿拉伯语
Korean ko 韩语
Thai th 泰语
Italian it 意大利语
German de 德语
Vietnamese vi 越南语
Malay ms 马来语
Indonesian id 印尼语
Filipino tl 菲律宾语
Hindi hi 印地语
Traditional Chinese zh-Hant 繁体中文
Polish pl 波兰语
Czech cs 捷克语
Dutch nl 荷兰语
Khmer km 高棉语
Burmese my 缅甸语
Persian fa 波斯语
Gujarati gu 古吉拉特语
Urdu ur 乌尔都语
Telugu te 泰卢固语
Marathi mr 马拉地语
Hebrew he 希伯来语
Bengali bn 孟加拉语
Tamil ta 泰米尔语
Ukrainian uk 乌克兰语
Tibetan bo 藏语
Kazakh kk 哈萨克语
Mongolian mn 蒙古语
Uyghur ug 维吾尔语
Cantonese yue 粤语

Citing Hunyuan-MT:

@misc{hunyuan_mt,
      title={Hunyuan-MT Technical Report}, 
      author={Mao Zheng and Zheng Li and Bingxin Qu and Mingyang Song and Yang Du and Mingrui Sun and Di Wang},
      year={2025},
      eprint={2509.05209},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.05209}, 
}

📝 Limitations & Considerations

  • Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • FNI scores are relative rankings and may change as new models are added.
  • License Unknown: Verify licensing terms before commercial use.
  • Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__tencent__hunyuan_mt_7b,
  author = {tencent},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/tencent/hunyuan-mt-7b}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
tencent. (2026). undefined [Model]. Free2AITools. https://huggingface.co/tencent/hunyuan-mt-7b
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseℹ️ Verify with original source

🛡️ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--tencent--hunyuan-mt-7b
author
tencent
tags
transformerssafetensorshunyuan_v1_densetext-generationtranslationzhenfrptesjatrruarkothitdevimsidtlhiplcsnlkmmyfaguurtemrhebntaukbokkmnugarxiv:2509.05209endpoints_compatibleregion:us

⚙️ Technical Specs

architecture
HunYuanDenseV1ForCausalLM
params billions
8.03
context length
4,096
vram gb
7.3
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
705
downloads
9,840

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)