🧠

paraphrase-multilingual-minilm-l12-v2

by sentence-transformers Model ID: hf-model--sentence-transformers--paraphrase-multilingual-minilm-l12-v2
FNI 15
Top 87%
🔗 View Source
Audited 15 FNI Score
Tiny 0.12B Params
4k Context
Hot 16.6M Downloads
8G GPU ~2GB Est. VRAM

⚡ Quick Commands

đŸĻ™ Ollama Run
ollama run paraphrase-multilingual-minilm-l12-v2
🤗 HF Download
huggingface-cli download sentence-transformers/paraphrase-multilingual-minilm-l12-v2
đŸ“Ļ Install Lib
pip install -U transformers
📊

Engineering Specs

⚡ Hardware

Parameters
0.12B
Architecture
BertModel
Context Length
4K
Model Size
6.2GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~1.4GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

đŸ•¸ī¸ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

đŸ”ŦTechnical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

⚡ Quick Commands

đŸĻ™ Ollama Run
ollama run paraphrase-multilingual-minilm-l12-v2
🤗 HF Download
huggingface-cli download sentence-transformers/paraphrase-multilingual-minilm-l12-v2
đŸ“Ļ Install Lib
pip install -U transformers
đŸ–Ĩī¸

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
đŸ’ģ Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
đŸ—ī¸ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
â„šī¸

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

This model was trained by sentence-transformers.

If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}
ZEN MODE â€ĸ README

sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2

This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.

Usage (Sentence-Transformers)

Using this model becomes easy when you have sentence-transformers installed:

pip install -U sentence-transformers

Then you can use the model like this:

from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]

model = SentenceTransformer('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
embeddings = model.encode(sentences)
print(embeddings)

Usage (HuggingFace Transformers)

Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.

from transformers import AutoTokenizer, AutoModel
import torch


# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
    token_embeddings = model_output[0] #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)


# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')
model = AutoModel.from_pretrained('sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2')

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)

# Perform pooling. In this case, max pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])

print("Sentence embeddings:")
print(sentence_embeddings)

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)

Citing & Authors

This model was trained by sentence-transformers.

If you find this model helpful, feel free to cite our publication Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks:

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "http://arxiv.org/abs/1908.10084",
}

📝 Limitations & Considerations

  • â€ĸ Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • â€ĸ VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • â€ĸ FNI scores are relative rankings and may change as new models are added.
  • ⚠ License Unknown: Verify licensing terms before commercial use.
  • â€ĸ Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__sentence_transformers__paraphrase_multilingual_minilm_l12_v2,
  author = {sentence-transformers},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/sentence-transformers/paraphrase-multilingual-minilm-l12-v2}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
sentence-transformers. (2026). undefined [Model]. Free2AITools. https://huggingface.co/sentence-transformers/paraphrase-multilingual-minilm-l12-v2
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseâ„šī¸ Verify with original source

đŸ›Ąī¸ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--sentence-transformers--paraphrase-multilingual-minilm-l12-v2
author
sentence-transformers
tags
sentence-transformerspytorchtfonnxsafetensorsopenvinobertfeature-extractionsentence-similaritytransformersmultilingualarbgcacsdadeelenesetfafifrglguhehihrhuhyiditjakakokultlvmkmnmrmsmynbnlplptroruskslsqsrsvthtrukurviarxiv:1908.10084license:apache-2.0text-embeddings-inferenceendpoints_compatibleregion:us

âš™ī¸ Technical Specs

architecture
BertModel
params billions
0.12
context length
4,096
vram gb
1.4
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
1,072
downloads
16,597,830

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)