Model

Mixtral 8x7b V0.1

by mistralai ID: hf-model--mistralai--mixtral-8x7b-v0.1
Scale 7B
FNI Rank 32
Percentile Top 4%
Activity
β†’ 0.0%

The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested. For full details of this model please read our ...

Audited 32 FNI Score
7B Params
4k Context
Hot 54.2K Downloads
8G GPU ~7GB Est. VRAM
Model Information Summary
Entity Passport
Registry ID hf-model--mistralai--mixtral-8x7b-v0.1
Provider huggingface
πŸ’Ύ

Compute Threshold

~6.5GB VRAM

Interactive
Analyze Hardware
β–Ό

* Estimated for 4-Bit Quantization. Actual usage varies by context length and parallel batching.

πŸ•ΈοΈ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

⚑

πŸ”— Core Ecosystem

πŸ•ΈοΈ

Intelligence Hive

Multi-source Relation Matrix

Live Index
πŸŽ“

Technical Articles

πŸ“œ

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__mistralai__mixtral_8x7b_v0.1,
  author = {mistralai},
  title = {Mixtral 8x7b V0.1 Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/mistralai/Mixtral-8x7B-v0.1}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
mistralai. (2026). Mixtral 8x7b V0.1 [Model]. Free2AITools. https://huggingface.co/mistralai/Mixtral-8x7B-v0.1

πŸ”¬Technical Deep Dive

Full Specifications [+]

⚑ Quick Commands

πŸ¦™ Ollama Run
ollama run mixtral-8x7b-v0.1
πŸ€— HF Download
huggingface-cli download mistralai/mixtral-8x7b-v0.1

βš–οΈ Free2AI Nexus Index

Methodology β†’ πŸ“˜ What is FNI?
32.0
Top 4% Overall Impact
πŸ”₯ Popularity (P) 0
πŸš€ Velocity (V) 0
πŸ›‘οΈ Credibility (C) 0
πŸ”§ Utility (U) 0
Nexus Verified Data

πŸ’¬ Why this score?

This Mixtral 8x7b V0.1 has a P score of 0 (popularity from downloads/likes), V of 0 (growth velocity), C of 0 (credibility from citations), and U of 0 (utility/deploy support).

Data Verified πŸ• Last Updated: Not calculated
Free2AI Nexus Index | Fair Β· Transparent Β· Explainable | Full Methodology
---

πŸš€ What's Next?

README


library_name: vllm
license: apache-2.0
language:

  • fr
  • it
  • de
  • es
  • en
    tags:
  • moe
  • mistral-common
    extra_gated_description: >-
    If you want to learn more about how we process your personal data, please read
    our Privacy Policy.

Model Card for Mixtral-8x7B

The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.

For full details of this model please read our release blog post.

Warning

This repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.

Run the model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)

text = "Hello my name is"
inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:

In half-precision

Note float16 precision only works on GPU devices

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Lower precision using (8-bit & 4-bit) using bitsandbytes

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Load the model with Flash Attention 2

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Notice

Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, LΓ©lio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, ThΓ©ophile Gervet, Thibaut Lavril, Thomas Wang, TimothΓ©e Lacroix, William El Sayed.

ZEN MODE β€’ README

library_name: vllm
license: apache-2.0
language:

  • fr
  • it
  • de
  • es
  • en
    tags:
  • moe
  • mistral-common
    extra_gated_description: >-
    If you want to learn more about how we process your personal data, please read
    our Privacy Policy.

Model Card for Mixtral-8x7B

The Mixtral-8x7B Large Language Model (LLM) is a pretrained generative Sparse Mixture of Experts. The Mistral-8x7B outperforms Llama 2 70B on most benchmarks we tested.

For full details of this model please read our release blog post.

Warning

This repo contains weights that are compatible with vLLM serving of the model as well as Hugging Face transformers library. It is based on the original Mixtral torrent release, but the file format and parameter names are different. Please note that model cannot (yet) be instantiated with HF.

Run the model

from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1" tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(model_id)

text = "Hello my name is" inputs = tokenizer(text, return_tensors="pt")

outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True))

By default, transformers will load the model in full precision. Therefore you might be interested to further reduce down the memory requirements to run the model through the optimizations we offer in HF ecosystem:

In half-precision

Note float16 precision only works on GPU devices

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16).to(0)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Lower precision using (8-bit & 4-bit) using bitsandbytes

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, load_in_4bit=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Load the model with Flash Attention 2

Click to expand
+ import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

model_id = "mistralai/Mixtral-8x7B-v0.1"
tokenizer = AutoTokenizer.from_pretrained(model_id)

+ model = AutoModelForCausalLM.from_pretrained(model_id, use_flash_attention_2=True)

text = "Hello my name is"
+ inputs = tokenizer(text, return_tensors="pt").to(0)

outputs = model.generate(**inputs, max_new_tokens=20)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Notice

Mixtral-8x7B is a pretrained base model and therefore does not have any moderation mechanisms.

The Mistral AI Team

Albert Jiang, Alexandre Sablayrolles, Arthur Mensch, Blanche Savary, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, LΓ©lio Renard Lavaud, Louis Ternon, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, ThΓ©ophile Gervet, Thibaut Lavril, Thomas Wang, TimothΓ©e Lacroix, William El Sayed.

πŸ“ Limitations & Considerations

  • β€’ Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • β€’ VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • β€’ FNI scores are relative rankings and may change as new models are added.
  • β€’ Source: Unknown
Top Tier

Social Proof

HuggingFace Hub
1.8KLikes
54.2KDownloads
πŸ”„ Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

πŸ“Š FNI Methodology πŸ“š Knowledge Baseℹ️ Verify with original source

πŸ›‘οΈ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

πŸ†” Identity & Source

id
hf-model--mistralai--mixtral-8x7b-v0.1
source
huggingface
author
mistralai
tags
vllmsafetensorsmixtralmoemistral-commonfritdeesenlicense:apache-2.0region:us

βš™οΈ Technical Specs

architecture
mixtral
params billions
7
context length
4,096
pipeline tag
other
vram gb
6.5
vram is estimated
true
vram formula
VRAM β‰ˆ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

πŸ“Š Engagement & Metrics

likes
1,773
downloads
54,219

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)