🧠

llama-3.1-405b

by meta-llama Model ID: hf-model--meta-llama--llama-3.1-405b
FNI 2.3
Top 79%
🔗 View Source
Audited 2.3 FNI Score
Massive 405.85B Params
4k Context
Hot 216.6K Downloads
H100+ ~307GB Est. VRAM

⚡ Quick Commands

🤗 HF Download
huggingface-cli download meta-llama/llama-3.1-405b
đŸ“Ļ Install Lib
pip install -U transformers
📊

Engineering Specs

⚡ Hardware

Parameters
405.85B
Architecture
LlamaForCausalLM
Context Length
4K
Model Size
4347.3GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~306.9GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

đŸ•¸ī¸ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

đŸ”Ŧ

đŸ”Ŧ Research & Data

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

đŸ”ŦTechnical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

⚡ Quick Commands

🤗 HF Download
huggingface-cli download meta-llama/llama-3.1-405b
đŸ“Ļ Install Lib
pip install -U transformers
đŸ–Ĩī¸

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
đŸ’ģ Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
đŸ—ī¸ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
â„šī¸

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

Neural Fact Sheet: llama-3.1-405b

[!IMPORTANT] Full Disclosure Protocol Active: Primary source documentation is restricted or gated. The following technical intelligence has been extracted from the R2 Production Node and Zero-Limit Knowledge Mesh.

📊 Core Architecture

  • Parameter Scale: 405.85B
  • Neural Architecture: LlamaForCausalLM
  • Inference Efficiency: 2.3/100 (FNI Logic Score)
  • License Profile: Proprietary/Restricted

âš™ī¸ Technical Capabilities

  • Neural Context Window: 4k tokens
  • Memory Footprint: ~307GB (Q4) estimated VRAM
  • Pipeline Origin: Standard AI
  • Safety Status: Model utilizes developer-defined safety filters.

🚀 Strategic Recommendations

  1. Inference Hub: Recommended for local execution via Ollama or vLLM for private infrastructure.
  2. Context Limits: Optimal performance is maintained within the first 4k tokens of input.
  3. Hardware Alignment: Ideal for hardware with at least ~307GB (Q4) of high-speed video memory.

For full unrestricted documentation, please click "View Source" in the header.

ZEN MODE â€ĸ README

âš ī¸ Incomplete Data

Some information about this model is not available. Use with Caution - Verify details from the original source before relying on this data.

View Original Source →

📝 Limitations & Considerations

  • â€ĸ Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • â€ĸ VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • â€ĸ FNI scores are relative rankings and may change as new models are added.
  • ⚠ License Unknown: Verify licensing terms before commercial use.
  • â€ĸ Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__meta_llama__llama_3.1_405b,
  author = {meta-llama},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/meta-llama/llama-3.1-405b}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
meta-llama. (2026). undefined [Model]. Free2AITools. https://huggingface.co/meta-llama/llama-3.1-405b
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseâ„šī¸ Verify with original source

đŸ›Ąī¸ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--meta-llama--llama-3.1-405b
author
meta-llama
tags
transformerssafetensorsllamatext-generationfacebookmetapytorchllama-3endefritpthiestharxiv:2204.05149license:llama3.1text-generation-inferenceendpoints_compatibleregion:us

âš™ī¸ Technical Specs

architecture
LlamaForCausalLM
params billions
405.85
context length
4,096
vram gb
306.9
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 2GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
948
downloads
216,634

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)