🧠

multilingual-e5-large-instruct

by intfloat Model ID: hf-model--intfloat--multilingual-e5-large-instruct
FNI 18.3
Top 74%
🔗 View Source
Audited 18.3 FNI Score
Tiny 0.56B Params
4k Context
Hot 1.3M Downloads
8G GPU ~2GB Est. VRAM

Quick Commands

🦙 Ollama Run
ollama run multilingual-e5-large-instruct
🤗 HF Download
huggingface-cli download intfloat/multilingual-e5-large-instruct
📦 Install Lib
pip install -U transformers
📊

Engineering Specs

Hardware

Parameters
0.56B
Architecture
XLMRobertaModel
Context Length
4K
Model Size
8.3GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~1.7GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

🔬Technical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

Quick Commands

🦙 Ollama Run
ollama run multilingual-e5-large-instruct
🤗 HF Download
huggingface-cli download intfloat/multilingual-e5-large-instruct
📦 Install Lib
pip install -U transformers
🖥️

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
💻 Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
🏗️ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
ℹ️

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

100,024 chars • Full Disclosure Protocol Active

ZEN MODE • README

tags:

  • mteb
  • sentence-transformers
  • transformers model-index:
  • name: multilingual-e5-large-instruct results:
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 76.23880597014924
      • type: ap value: 39.07351965022687
      • type: f1 value: 70.04836733862683
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 66.71306209850107
      • type: ap value: 79.01499914759529
      • type: f1 value: 64.81951817560703
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 73.85307346326837
      • type: ap value: 22.447519885878737
      • type: f1 value: 61.0162730745633
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 76.04925053533191
      • type: ap value: 23.44983217128922
      • type: f1 value: 62.5723230907759
    • task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics:
      • type: accuracy value: 96.28742500000001
      • type: ap value: 94.8449918887462
      • type: f1 value: 96.28680923610432
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 56.716
      • type: f1 value: 55.76510398266401
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 52.99999999999999
      • type: f1 value: 52.00829994765178
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 48.806000000000004
      • type: f1 value: 48.082345914983634
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 48.507999999999996
      • type: f1 value: 47.68752844642045
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 47.709999999999994
      • type: f1 value: 47.05870376637181
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 44.662000000000006
      • type: f1 value: 43.42371965372771
    • task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics:
      • type: map_at_1 value: 31.721
      • type: map_at_10 value: 49.221
      • type: map_at_100 value: 49.884
      • type: map_at_1000 value: 49.888
      • type: map_at_3 value: 44.31
      • type: map_at_5 value: 47.276
      • type: mrr_at_1 value: 32.432
      • type: mrr_at_10 value: 49.5
      • type: mrr_at_100 value: 50.163000000000004
      • type: mrr_at_1000 value: 50.166
      • type: mrr_at_3 value: 44.618
      • type: mrr_at_5 value: 47.541
      • type: ndcg_at_1 value: 31.721
      • type: ndcg_at_10 value: 58.384
      • type: ndcg_at_100 value: 61.111000000000004
      • type: ndcg_at_1000 value: 61.187999999999995
      • type: ndcg_at_3 value: 48.386
      • type: ndcg_at_5 value: 53.708999999999996
      • type: precision_at_1 value: 31.721
      • type: precision_at_10 value: 8.741
      • type: precision_at_100 value: 0.991
      • type: precision_at_1000 value: 0.1
      • type: precision_at_3 value: 20.057
      • type: precision_at_5 value: 14.609
      • type: recall_at_1 value: 31.721
      • type: recall_at_10 value: 87.411
      • type: recall_at_100 value: 99.075
      • type: recall_at_1000 value: 99.644
      • type: recall_at_3 value: 60.171
      • type: recall_at_5 value: 73.044
    • task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics:
      • type: v_measure value: 46.40419580759799
    • task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics:
      • type: v_measure value: 40.48593255007969
    • task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics:
      • type: map value: 63.889179122289995
      • type: mrr value: 77.61146286769556
    • task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics:
      • type: cos_sim_pearson value: 88.15075203727929
      • type: cos_sim_spearman value: 86.9622224570873
      • type: euclidean_pearson value: 86.70473853624121
      • type: euclidean_spearman value: 86.9622224570873
      • type: manhattan_pearson value: 86.21089380980065
      • type: manhattan_spearman value: 86.75318154937008
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 99.65553235908142
      • type: f1 value: 99.60681976339595
      • type: precision value: 99.58246346555325
      • type: recall value: 99.65553235908142
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 99.26260180497468
      • type: f1 value: 99.14520507740848
      • type: precision value: 99.08650671362535
      • type: recall value: 99.26260180497468
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 98.07412538967787
      • type: f1 value: 97.86629719431936
      • type: precision value: 97.76238309664012
      • type: recall value: 98.07412538967787
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 99.42074776197998
      • type: f1 value: 99.38564156573635
      • type: precision value: 99.36808846761454
      • type: recall value: 99.42074776197998
    • task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics:
      • type: accuracy value: 85.73376623376623
      • type: f1 value: 85.68480707214599
    • task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics:
      • type: v_measure value: 40.935218072113855
    • task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics:
      • type: v_measure value: 36.276389017675264
    • task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics:
      • type: map_at_1 value: 27.764166666666668
      • type: map_at_10 value: 37.298166666666674
      • type: map_at_100 value: 38.530166666666666
      • type: map_at_1000 value: 38.64416666666667
      • type: map_at_3 value: 34.484833333333334
      • type: map_at_5 value: 36.0385
      • type: mrr_at_1 value: 32.93558333333333
      • type: mrr_at_10 value: 41.589749999999995
      • type: mrr_at_100 value: 42.425333333333334
      • type: mrr_at_1000 value: 42.476333333333336
      • type: mrr_at_3 value: 39.26825
      • type: mrr_at_5 value: 40.567083333333336
      • type: ndcg_at_1 value: 32.93558333333333
      • type: ndcg_at_10 value: 42.706583333333334
      • type: ndcg_at_100 value: 47.82483333333333
      • type: ndcg_at_1000 value: 49.95733333333334
      • type: ndcg_at_3 value: 38.064750000000004
      • type: ndcg_at_5 value: 40.18158333333333
      • type: precision_at_1 value: 32.93558333333333
      • type: precision_at_10 value: 7.459833333333334
      • type: precision_at_100 value: 1.1830833333333335
      • type: precision_at_1000 value: 0.15608333333333332
      • type: precision_at_3 value: 17.5235
      • type: precision_at_5 value: 12.349833333333333
      • type: recall_at_1 value: 27.764166666666668
      • type: recall_at_10 value: 54.31775
      • type: recall_at_100 value: 76.74350000000001
      • type: recall_at_1000 value: 91.45208333333332
      • type: recall_at_3 value: 41.23425
      • type: recall_at_5 value: 46.73983333333334
    • task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics:
      • type: map_at_1 value: 12.969
      • type: map_at_10 value: 21.584999999999997
      • type: map_at_100 value: 23.3
      • type: map_at_1000 value: 23.5
      • type: map_at_3 value: 18.218999999999998
      • type: map_at_5 value: 19.983
      • type: mrr_at_1 value: 29.316
      • type: mrr_at_10 value: 40.033
      • type: mrr_at_100 value: 40.96
      • type: mrr_at_1000 value: 41.001
      • type: mrr_at_3 value: 37.123
      • type: mrr_at_5 value: 38.757999999999996
      • type: ndcg_at_1 value: 29.316
      • type: ndcg_at_10 value: 29.858
      • type: ndcg_at_100 value: 36.756
      • type: ndcg_at_1000 value: 40.245999999999995
      • type: ndcg_at_3 value: 24.822
      • type: ndcg_at_5 value: 26.565
      • type: precision_at_1 value: 29.316
      • type: precision_at_10 value: 9.186
      • type: precision_at_100 value: 1.6549999999999998
      • type: precision_at_1000 value: 0.22999999999999998
      • type: precision_at_3 value: 18.436
      • type: precision_at_5 value: 13.876
      • type: recall_at_1 value: 12.969
      • type: recall_at_10 value: 35.142
      • type: recall_at_100 value: 59.143
      • type: recall_at_1000 value: 78.594
      • type: recall_at_3 value: 22.604
      • type: recall_at_5 value: 27.883000000000003
    • task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics:
      • type: map_at_1 value: 8.527999999999999
      • type: map_at_10 value: 17.974999999999998
      • type: map_at_100 value: 25.665
      • type: map_at_1000 value: 27.406000000000002
      • type: map_at_3 value: 13.017999999999999
      • type: map_at_5 value: 15.137
      • type: mrr_at_1 value: 62.5
      • type: mrr_at_10 value: 71.891
      • type: mrr_at_100 value: 72.294
      • type: mrr_at_1000 value: 72.296
      • type: mrr_at_3 value: 69.958
      • type: mrr_at_5 value: 71.121
      • type: ndcg_at_1 value: 50.875
      • type: ndcg_at_10 value: 38.36
      • type: ndcg_at_100 value: 44.235
      • type: ndcg_at_1000 value: 52.154
      • type: ndcg_at_3 value: 43.008
      • type: ndcg_at_5 value: 40.083999999999996
      • type: precision_at_1 value: 62.5
      • type: precision_at_10 value: 30.0
      • type: precision_at_100 value: 10.038
      • type: precision_at_1000 value: 2.0869999999999997
      • type: precision_at_3 value: 46.833000000000006
      • type: precision_at_5 value: 38.800000000000004
      • type: recall_at_1 value: 8.527999999999999
      • type: recall_at_10 value: 23.828
      • type: recall_at_100 value: 52.322
      • type: recall_at_1000 value: 77.143
      • type: recall_at_3 value: 14.136000000000001
      • type: recall_at_5 value: 17.761
    • task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics:
      • type: accuracy value: 51.51
      • type: f1 value: 47.632159862049896
    • task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics:
      • type: map_at_1 value: 60.734
      • type: map_at_10 value: 72.442
      • type: map_at_100 value: 72.735
      • type: map_at_1000 value: 72.75
      • type: map_at_3 value: 70.41199999999999
      • type: map_at_5 value: 71.80499999999999
      • type: mrr_at_1 value: 65.212
      • type: mrr_at_10 value: 76.613
      • type: mrr_at_100 value: 76.79899999999999
      • type: mrr_at_1000 value: 76.801
      • type: mrr_at_3 value: 74.8
      • type: mrr_at_5 value: 76.12400000000001
      • type: ndcg_at_1 value: 65.212
      • type: ndcg_at_10 value: 77.988
      • type: ndcg_at_100 value: 79.167
      • type: ndcg_at_1000 value: 79.452
      • type: ndcg_at_3 value: 74.362
      • type: ndcg_at_5 value: 76.666
      • type: precision_at_1 value: 65.212
      • type: precision_at_10 value: 10.003
      • type: precision_at_100 value: 1.077
      • type: precision_at_1000 value: 0.11199999999999999
      • type: precision_at_3 value: 29.518
      • type: precision_at_5 value: 19.016
      • type: recall_at_1 value: 60.734
      • type: recall_at_10 value: 90.824
      • type: recall_at_100 value: 95.71600000000001
      • type: recall_at_1000 value: 97.577
      • type: recall_at_3 value: 81.243
      • type: recall_at_5 value: 86.90299999999999
    • task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics:
      • type: map_at_1 value: 23.845
      • type: map_at_10 value: 39.281
      • type: map_at_100 value: 41.422
      • type: map_at_1000 value: 41.593
      • type: map_at_3 value: 34.467
      • type: map_at_5 value: 37.017
      • type: mrr_at_1 value: 47.531
      • type: mrr_at_10 value: 56.204
      • type: mrr_at_100 value: 56.928999999999995
      • type: mrr_at_1000 value: 56.962999999999994
      • type: mrr_at_3 value: 54.115
      • type: mrr_at_5 value: 55.373000000000005
      • type: ndcg_at_1 value: 47.531
      • type: ndcg_at_10 value: 47.711999999999996
      • type: ndcg_at_100 value: 54.510999999999996
      • type: ndcg_at_1000 value: 57.103
      • type: ndcg_at_3 value: 44.145
      • type: ndcg_at_5 value: 45.032
      • type: precision_at_1 value: 47.531
      • type: precision_at_10 value: 13.194
      • type: precision_at_100 value: 2.045
      • type: precision_at_1000 value: 0.249
      • type: precision_at_3 value: 29.424
      • type: precision_at_5 value: 21.451
      • type: recall_at_1 value: 23.845
      • type: recall_at_10 value: 54.967
      • type: recall_at_100 value: 79.11399999999999
      • type: recall_at_1000 value: 94.56700000000001
      • type: recall_at_3 value: 40.256
      • type: recall_at_5 value: 46.215
    • task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics:
      • type: map_at_1 value: 37.819
      • type: map_at_10 value: 60.889
      • type: map_at_100 value: 61.717999999999996
      • type: map_at_1000 value: 61.778
      • type: map_at_3 value: 57.254000000000005
      • type: map_at_5 value: 59.541
      • type: mrr_at_1 value: 75.638
      • type: mrr_at_10 value: 82.173
      • type: mrr_at_100 value: 82.362
      • type: mrr_at_1000 value: 82.37
      • type: mrr_at_3 value: 81.089
      • type: mrr_at_5 value: 81.827
      • type: ndcg_at_1 value: 75.638
      • type: ndcg_at_10 value: 69.317
      • type: ndcg_at_100 value: 72.221
      • type: ndcg_at_1000 value: 73.382
      • type: ndcg_at_3 value: 64.14
      • type: ndcg_at_5 value: 67.07600000000001
      • type: precision_at_1 value: 75.638
      • type: precision_at_10 value: 14.704999999999998
      • type: precision_at_100 value: 1.698
      • type: precision_at_1000 value: 0.185
      • type: precision_at_3 value: 41.394999999999996
      • type: precision_at_5 value: 27.162999999999997
      • type: recall_at_1 value: 37.819
      • type: recall_at_10 value: 73.52499999999999
      • type: recall_at_100 value: 84.875
      • type: recall_at_1000 value: 92.559
      • type: recall_at_3 value: 62.092999999999996
      • type: recall_at_5 value: 67.907
    • task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics:
      • type: accuracy value: 94.60079999999999
      • type: ap value: 92.67396345347356
      • type: f1 value: 94.5988098167121
    • task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics:
      • type: map_at_1 value: 21.285
      • type: map_at_10 value: 33.436
      • type: map_at_100 value: 34.63
      • type: map_at_1000 value: 34.681
      • type: map_at_3 value: 29.412
      • type: map_at_5 value: 31.715
      • type: mrr_at_1 value: 21.848
      • type: mrr_at_10 value: 33.979
      • type: mrr_at_100 value: 35.118
      • type: mrr_at_1000 value: 35.162
      • type: mrr_at_3 value: 30.036
      • type: mrr_at_5 value: 32.298
      • type: ndcg_at_1 value: 21.862000000000002
      • type: ndcg_at_10 value: 40.43
      • type: ndcg_at_100 value: 46.17
      • type: ndcg_at_1000 value: 47.412
      • type: ndcg_at_3 value: 32.221
      • type: ndcg_at_5 value: 36.332
      • type: precision_at_1 value: 21.862000000000002
      • type: precision_at_10 value: 6.491
      • type: precision_at_100 value: 0.935
      • type: precision_at_1000 value: 0.104
      • type: precision_at_3 value: 13.744
      • type: precision_at_5 value: 10.331999999999999
      • type: recall_at_1 value: 21.285
      • type: recall_at_10 value: 62.083
      • type: recall_at_100 value: 88.576
      • type: recall_at_1000 value: 98.006
      • type: recall_at_3 value: 39.729
      • type: recall_at_5 value: 49.608000000000004
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 93.92612859097127
      • type: f1 value: 93.82370333372853
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 92.67681036911807
      • type: f1 value: 92.14191382411472
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 92.26817878585723
      • type: f1 value: 91.92824250337878
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 89.96554963983714
      • type: f1 value: 90.02859329630792
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 90.02509860164935
      • type: f1 value: 89.30665159182062
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 87.55515370705244
      • type: f1 value: 87.94449232331907
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 82.4623803009576
      • type: f1 value: 66.06738378772725
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 79.3716539870386
      • type: f1 value: 60.37614033396853
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 80.34022681787857
      • type: f1 value: 58.302008026952
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 76.72095208268087
      • type: f1 value: 59.64524724009049
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 77.87020437432773
      • type: f1 value: 57.80202694670567
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 77.73598553345387
      • type: f1 value: 58.19628250675031
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.6630800268998
      • type: f1 value: 65.00996668051691
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 60.7128446536651
      • type: f1 value: 57.95860594874963
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.61129791526563
      • type: f1 value: 59.75328290206483
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.00134498991257
      • type: f1 value: 67.0230483991802
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 68.54068594485541
      • type: f1 value: 65.54604628946976
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.032952252858095
      • type: f1 value: 58.715741857057104
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.80901143241427
      • type: f1 value: 68.33963989243877
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.47141896435777
      • type: f1 value: 69.56765020308262
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.2373907195696
      • type: f1 value: 69.04529836036467
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 77.05783456624076
      • type: f1 value: 74.69430584708174
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.82111634162744
      • type: f1 value: 70.77228952803762
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 74.25353059852051
      • type: f1 value: 71.05310103416411
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.28648285137861
      • type: f1 value: 69.08020473732226
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.31540013449899
      • type: f1 value: 70.9426355465791
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.2151983860121
      • type: f1 value: 67.52541755908858
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.58372562205784
      • type: f1 value: 69.49769064229827
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.9233355749832
      • type: f1 value: 69.36311548259593
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 68.07330195023538
      • type: f1 value: 64.99882022345572
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.62273032952253
      • type: f1 value: 70.6394885471001
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 65.77000672494957
      • type: f1 value: 62.9368944815065
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.453261600538
      • type: f1 value: 70.85069934666681
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 74.6906523201076
      • type: f1 value: 72.03249740074217
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.03631472763953
      • type: f1 value: 59.3165215571852
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 58.913920645595155
      • type: f1 value: 57.367337711611285
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 54.42837928715535
      • type: f1 value: 52.60527294970906
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 66.33490248823135
      • type: f1 value: 63.213340969404065
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.58507061197041
      • type: f1 value: 68.40256628040486
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.11230665770006
      • type: f1 value: 66.44863577842305
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.70073974445192
      • type: f1 value: 67.21291337273702
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 66.43913920645595
      • type: f1 value: 64.09838087422806
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.80026899798251
      • type: f1 value: 68.76986742962444
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 64.78816408876934
      • type: f1 value: 62.18781873428972
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.6577000672495
      • type: f1 value: 68.75171511133003
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 74.42501681237391
      • type: f1 value: 71.18434963451544
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.64828513786146
      • type: f1 value: 70.67741914007422
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.62811028917284
      • type: f1 value: 71.36402039740959
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.88634835238736
      • type: f1 value: 69.23701923480677
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 74.15938130464022
      • type: f1 value: 71.87792218993388
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.96301277740416
      • type: f1 value: 67.29584200202983
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.49562878278412
      • type: f1 value: 66.91716685679431
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 74.6805648957633
      • type: f1 value: 72.02723592594374
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.00605245460659
      • type: f1 value: 60.16716669482932
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 66.90988567585742
      • type: f1 value: 63.99405488777784
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.62273032952253
      • type: f1 value: 65.17213906909481
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.50907868190988
      • type: f1 value: 69.15165697194853
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.30733019502352
      • type: f1 value: 66.69024007380474
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.24277067921989
      • type: f1 value: 68.80515408492947
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.49831876260929
      • type: f1 value: 64.83778567111116
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.28782784129119
      • type: f1 value: 69.3294186700733
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.315400134499
      • type: f1 value: 71.22674385243207
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.37794216543377
      • type: f1 value: 68.96962492838232
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.33557498318764
      • type: f1 value: 72.28949738478356
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 65.84398117014123
      • type: f1 value: 64.71026362091463
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 69.76462676529925
      • type: f1 value: 69.8229667407667
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.02420981842636
      • type: f1 value: 71.76576384895898
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.7572293207801
      • type: f1 value: 72.76840765295256
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 68.02286482851379
      • type: f1 value: 66.17237947327872
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.60928043039678
      • type: f1 value: 77.27094731234773
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.68325487558843
      • type: f1 value: 77.97530399082261
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.13315400134498
      • type: f1 value: 75.97558584796424
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 80.47410894418292
      • type: f1 value: 80.52244841473792
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.9670477471419
      • type: f1 value: 77.37318805793146
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 78.09683927370544
      • type: f1 value: 77.69773737430847
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.20847343644922
      • type: f1 value: 75.17071738727348
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.07464694014796
      • type: f1 value: 77.16136207698571
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.53396099529255
      • type: f1 value: 73.58296404484122
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.75319435104237
      • type: f1 value: 75.24674707850833
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.0948217888366
      • type: f1 value: 76.47559490205028
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.07599193006052
      • type: f1 value: 70.76028043093511
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.10490921318089
      • type: f1 value: 77.01215275283272
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.25756556825824
      • type: f1 value: 70.20605314648762
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.08137188971082
      • type: f1 value: 77.3899269057439
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 79.35440484196369
      • type: f1 value: 79.58964690002772
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 68.42299932750504
      • type: f1 value: 68.07844356925413
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.15669132481507
      • type: f1 value: 65.89383352608513
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 60.11432414256894
      • type: f1 value: 57.69910594559806
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.24747814391392
      • type: f1 value: 70.42455553830918
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.46267652992603
      • type: f1 value: 76.8854559308316
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.24815063887021
      • type: f1 value: 72.77805034658074
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.11566913248151
      • type: f1 value: 73.86147988001356
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 70.0168123739072
      • type: f1 value: 69.38515920054571
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.41156691324814
      • type: f1 value: 73.43474953408237
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 68.39609952925353
      • type: f1 value: 67.29731681109291
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.20914593140552
      • type: f1 value: 77.07066497935367
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 78.52387357094821
      • type: f1 value: 78.5259569473291
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.6913248150639
      • type: f1 value: 76.91201656350455
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.1217215870881
      • type: f1 value: 77.41179937912504
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.25891055817083
      • type: f1 value: 75.8089244542887
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.70679219905851
      • type: f1 value: 78.21459594517711
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.83523873570948
      • type: f1 value: 74.86847028401978
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.71755211835911
      • type: f1 value: 74.0214326485662
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 79.06523201075991
      • type: f1 value: 79.10545620325138
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 67.91862811028918
      • type: f1 value: 66.50386121217983
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 70.93140551445865
      • type: f1 value: 70.755435928495
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.40753194351042
      • type: f1 value: 71.61816115782923
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.1815736381977
      • type: f1 value: 75.08016717887205
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.86482851378614
      • type: f1 value: 72.39521180006291
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.46940147948891
      • type: f1 value: 76.70044085362349
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.89307330195024
      • type: f1 value: 71.5721825332298
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.7511768661735
      • type: f1 value: 75.17918654541515
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 78.69535978480162
      • type: f1 value: 78.90019070153316
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.45729657027572
      • type: f1 value: 76.19578371794672
    • task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics:
      • type: v_measure value: 36.92715354123554
    • task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics:
      • type: v_measure value: 35.53536244162518
    • task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics:
      • type: map value: 33.08507884504006
      • type: mrr value: 34.32436977159129
    • task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics:
      • type: map_at_1 value: 5.935
      • type: map_at_10 value: 13.297
      • type: map_at_100 value: 16.907
      • type: map_at_1000 value: 18.391
      • type: map_at_3 value: 9.626999999999999
      • type: map_at_5 value: 11.190999999999999
      • type: mrr_at_1 value: 46.129999999999995
      • type: mrr_at_10 value: 54.346000000000004
      • type: mrr_at_100 value: 55.067
      • type: mrr_at_1000 value: 55.1
      • type: mrr_at_3 value: 51.961
      • type: mrr_at_5 value: 53.246
      • type: ndcg_at_1 value: 44.118
      • type: ndcg_at_10 value: 35.534
      • type: ndcg_at_100 value: 32.946999999999996
      • type: ndcg_at_1000 value: 41.599000000000004
      • type: ndcg_at_3 value: 40.25
      • type: ndcg_at_5 value: 37.978
      • type: precision_at_1 value: 46.129999999999995
      • type: precision_at_10 value: 26.842
      • type: precision_at_100 value: 8.427
      • type: precision_at_1000 value: 2.128
      • type: precision_at_3 value: 37.977
      • type: precision_at_5 value: 32.879000000000005
      • type: recall_at_1 value: 5.935
      • type: recall_at_10 value: 17.211000000000002
      • type: recall_at_100 value: 34.33
      • type: recall_at_1000 value: 65.551
      • type: recall_at_3 value: 10.483
      • type: recall_at_5 value: 13.078999999999999
    • task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics:
      • type: map_at_1 value: 35.231
      • type: map_at_10 value: 50.202000000000005
      • type: map_at_100 value: 51.154999999999994
      • type: map_at_1000 value: 51.181
      • type: map_at_3 value: 45.774
      • type: map_at_5 value: 48.522
      • type: mrr_at_1 value: 39.687
      • type: mrr_at_10 value: 52.88
      • type: mrr_at_100 value: 53.569
      • type: mrr_at_1000 value: 53.58500000000001
      • type: mrr_at_3 value: 49.228
      • type: mrr_at_5 value: 51.525
      • type: ndcg_at_1 value: 39.687
      • type: ndcg_at_10 value: 57.754000000000005
      • type: ndcg_at_100 value: 61.597
      • type: ndcg_at_1000 value: 62.18900000000001
      • type: ndcg_at_3 value: 49.55
      • type: ndcg_at_5 value: 54.11899999999999
      • type: precision_at_1 value: 39.687
      • type: precision_at_10 value: 9.313
      • type: precision_at_100 value: 1.146
      • type: precision_at_1000 value: 0.12
      • type: precision_at_3 value: 22.229
      • type: precision_at_5 value: 15.939
      • type: recall_at_1 value: 35.231
      • type: recall_at_10 value: 78.083
      • type: recall_at_100 value: 94.42099999999999
      • type: recall_at_1000 value: 98.81
      • type: recall_at_3 value: 57.047000000000004
      • type: recall_at_5 value: 67.637
    • task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics:
      • type: map_at_1 value: 71.241
      • type: map_at_10 value: 85.462
      • type: map_at_100 value: 86.083
      • type: map_at_1000 value: 86.09700000000001
      • type: map_at_3 value: 82.49499999999999
      • type: map_at_5 value: 84.392
      • type: mrr_at_1 value: 82.09
      • type: mrr_at_10 value: 88.301
      • type: mrr_at_100 value: 88.383
      • type: mrr_at_1000 value: 88.384
      • type: mrr_at_3 value: 87.37
      • type: mrr_at_5 value: 88.035
      • type: ndcg_at_1 value: 82.12
      • type: ndcg_at_10 value: 89.149
      • type: ndcg_at_100 value: 90.235
      • type: ndcg_at_1000 value: 90.307
      • type: ndcg_at_3 value: 86.37599999999999
      • type: ndcg_at_5 value: 87.964
      • type: precision_at_1 value: 82.12
      • type: precision_at_10 value: 13.56
      • type: precision_at_100 value: 1.539
      • type: precision_at_1000 value: 0.157
      • type: precision_at_3 value: 37.88
      • type: precision_at_5 value: 24.92
      • type: recall_at_1 value: 71.241
      • type: recall_at_10 value: 96.128
      • type: recall_at_100 value: 99.696
      • type: recall_at_1000 value: 99.994
      • type: recall_at_3 value: 88.181
      • type: recall_at_5 value: 92.694
    • task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics:
      • type: v_measure value: 56.59757799655151
    • task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics:
      • type: v_measure value: 64.27391998854624
    • task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics:
      • type: map_at_1 value: 4.243
      • type: map_at_10 value: 10.965
      • type: map_at_100 value: 12.934999999999999
      • type: map_at_1000 value: 13.256
      • type: map_at_3 value: 7.907
      • type: map_at_5 value: 9.435
      • type: mrr_at_1 value: 20.9
      • type: mrr_at_10 value: 31.849
      • type: mrr_at_100 value: 32.964
      • type: mrr_at_1000 value: 33.024
      • type: mrr_at_3 value: 28.517
      • type: mrr_at_5 value: 30.381999999999998
      • type: ndcg_at_1 value: 20.9
      • type: ndcg_at_10 value: 18.723
      • type: ndcg_at_100 value: 26.384999999999998
      • type: ndcg_at_1000 value: 32.114
      • type: ndcg_at_3 value: 17.753
      • type: ndcg_at_5 value: 15.558
      • type: precision_at_1 value: 20.9
      • type: precision_at_10 value: 9.8
      • type: precision_at_100 value: 2.078
      • type: precision_at_1000 value: 0.345
      • type: precision_at_3 value: 16.900000000000002
      • type: precision_at_5 value: 13.88
      • type: recall_at_1 value: 4.243
      • type: recall_at_10 value: 19.885
      • type: recall_at_100 value: 42.17
      • type: recall_at_1000 value: 70.12
      • type: recall_at_3 value: 10.288
      • type: recall_at_5 value: 14.072000000000001
    • task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics:
      • type: cos_sim_pearson value: 85.84209174935282
      • type: cos_sim_spearman value: 81.73248048438833
      • type: euclidean_pearson value: 83.02810070308149
      • type: euclidean_spearman value: 81.73248295679514
      • type: manhattan_pearson value: 82.95368060376002
      • type: manhattan_spearman value: 81.60277910998718
    • task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics:
      • type: cos_sim_pearson value: 88.52628804556943
      • type: cos_sim_spearman value: 82.5713913555672
      • type: euclidean_pearson value: 85.8796774746988
      • type: euclidean_spearman value: 82.57137506803424
      • type: manhattan_pearson value: 85.79671002960058
      • type: manhattan_spearman value: 82.49445981618027
    • task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics:
      • type: cos_sim_pearson value: 86.23682503505542
      • type: cos_sim_spearman value: 87.15008956711806
      • type: euclidean_pearson value: 86.79805401524959
      • type: euclidean_spearman value: 87.15008956711806
      • type: manhattan_pearson value: 86.65298502699244
      • type: manhattan_spearman value: 86.97677821948562
    • task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics:
      • type: cos_sim_pearson value: 85.63370304677802
      • type: cos_sim_spearman value: 84.97105553540318
      • type: euclidean_pearson value: 85.28896108687721
      • type: euclidean_spearman value: 84.97105553540318
      • type: manhattan_pearson value: 85.09663190337331
      • type: manhattan_spearman value: 84.79126831644619
    • task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics:
      • type: cos_sim_pearson value: 90.2614838800733
      • type: cos_sim_spearman value: 91.0509162991835
      • type: euclidean_pearson value: 90.33098317533373
      • type: euclidean_spearman value: 91.05091625871644
      • type: manhattan_pearson value: 90.26250435151107
      • type: manhattan_spearman value: 90.97999594417519
    • task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics:
      • type: cos_sim_pearson value: 85.80480973335091
      • type: cos_sim_spearman value: 87.313695492969
      • type: euclidean_pearson value: 86.49267251576939
      • type: euclidean_spearman value: 87.313695492969
      • type: manhattan_pearson value: 86.44019901831935
      • type: manhattan_spearman value: 87.24205395460392
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 90.05662789380672
      • type: cos_sim_spearman value: 90.02759424426651
      • type: euclidean_pearson value: 90.4042483422981
      • type: euclidean_spearman value: 90.02759424426651
      • type: manhattan_pearson value: 90.51446975000226
      • type: manhattan_spearman value: 90.08832889933616
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 67.5975528273532
      • type: cos_sim_spearman value: 67.62969861411354
      • type: euclidean_pearson value: 69.224275734323
      • type: euclidean_spearman value: 67.62969861411354
      • type: manhattan_pearson value: 69.3761447059927
      • type: manhattan_spearman value: 67.90921005611467
    • task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics:
      • type: cos_sim_pearson value: 87.11244327231684
      • type: cos_sim_spearman value: 88.37902438979035
      • type: euclidean_pearson value: 87.86054279847336
      • type: euclidean_spearman value: 88.37902438979035
      • type: manhattan_pearson value: 87.77257757320378
      • type: manhattan_spearman value: 88.25208966098123
    • task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics:
      • type: map value: 85.87174608143563
      • type: mrr value: 96.12836872640794
    • task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics:
      • type: map_at_1 value: 57.760999999999996
      • type: map_at_10 value: 67.258
      • type: map_at_100 value: 67.757
      • type: map_at_1000 value: 67.78800000000001
      • type: map_at_3 value: 64.602
      • type: map_at_5 value: 65.64
      • type: mrr_at_1 value: 60.667
      • type: mrr_at_10 value: 68.441
      • type: mrr_at_100 value: 68.825
      • type: mrr_at_1000 value: 68.853
      • type: mrr_at_3 value: 66.444
      • type: mrr_at_5 value: 67.26100000000001
      • type: ndcg_at_1 value: 60.667
      • type: ndcg_at_10 value: 71.852
      • type: ndcg_at_100 value: 73.9
      • type: ndcg_at_1000 value: 74.628
      • type: ndcg_at_3 value: 67.093
      • type: ndcg_at_5 value: 68.58
      • type: precision_at_1 value: 60.667
      • type: precision_at_10 value: 9.6
      • type: precision_at_100 value: 1.0670000000000002
      • type: precision_at_1000 value: 0.11199999999999999
      • type: precision_at_3 value: 26.111
      • type: precision_at_5 value: 16.733
      • type: recall_at_1 value: 57.760999999999996
      • type: recall_at_10 value: 84.967
      • type: recall_at_100 value: 93.833
      • type: recall_at_1000 value: 99.333
      • type: recall_at_3 value: 71.589
      • type: recall_at_5 value: 75.483
    • task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics:
      • type: cos_sim_accuracy value: 99.66633663366336
      • type: cos_sim_ap value: 91.17685358899108
      • type: cos_sim_f1 value: 82.16818642350559
      • type: cos_sim_precision value: 83.26488706365504
      • type: cos_sim_recall value: 81.10000000000001
      • type: dot_accuracy value: 99.66633663366336
      • type: dot_ap value: 91.17663411119032
      • type: dot_f1 value: 82.16818642350559
      • type: dot_precision value: 83.26488706365504
      • type: dot_recall value: 81.10000000000001
      • type: euclidean_accuracy value: 99.66633663366336
      • type: euclidean_ap value: 91.17685189882275
      • type: euclidean_f1 value: 82.16818642350559
      • type: euclidean_precision value: 83.26488706365504
      • type: euclidean_recall value: 81.10000000000001
      • type: manhattan_accuracy value: 99.66633663366336
      • type: manhattan_ap value: 91.2241619496737
      • type: manhattan_f1 value: 82.20472440944883
      • type: manhattan_precision value: 86.51933701657458
      • type: manhattan_recall value: 78.3
      • type: max_accuracy value: 99.66633663366336
      • type: max_ap value: 91.2241619496737
      • type: max_f1 value: 82.20472440944883
    • task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics:
      • type: v_measure value: 66.85101268897951
    • task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics:
      • type: v_measure value: 42.461184054706905
    • task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics:
      • type: map value: 51.44542568873886
      • type: mrr value: 52.33656151854681
    • task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics:
      • type: cos_sim_pearson value: 30.75982974997539
      • type: cos_sim_spearman value: 30.385405026539914
      • type: dot_pearson value: 30.75982433546523
      • type: dot_spearman value: 30.385405026539914
    • task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics:
      • type: map_at_1 value: 0.22799999999999998
      • type: map_at_10 value: 2.064
      • type: map_at_100 value: 13.056000000000001
      • type: map_at_1000 value: 31.747999999999998
      • type: map_at_3 value: 0.67
      • type: map_at_5 value: 1.097
      • type: mrr_at_1 value: 90.0
      • type: mrr_at_10 value: 94.667
      • type: mrr_at_100 value: 94.667
      • type: mrr_at_1000 value: 94.667
      • type: mrr_at_3 value: 94.667
      • type: mrr_at_5 value: 94.667
      • type: ndcg_at_1 value: 86.0
      • type: ndcg_at_10 value: 82.0
      • type: ndcg_at_100 value: 64.307
      • type: ndcg_at_1000 value: 57.023999999999994
      • type: ndcg_at_3 value: 85.816
      • type: ndcg_at_5 value: 84.904
      • type: precision_at_1 value: 90.0
      • type: precision_at_10 value: 85.8
      • type: precision_at_100 value: 66.46
      • type: precision_at_1000 value: 25.202
      • type: precision_at_3 value: 90.0
      • type: precision_at_5 value: 89.2
      • type: recall_at_1 value: 0.22799999999999998
      • type: recall_at_10 value: 2.235
      • type: recall_at_100 value: 16.185
      • type: recall_at_1000 value: 53.620999999999995
      • type: recall_at_3 value: 0.7040000000000001
      • type: recall_at_5 value: 1.172
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.39999999999999
      • type: f1 value: 96.75
      • type: precision value: 96.45
      • type: recall value: 97.39999999999999
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 85.54913294797689
      • type: f1 value: 82.46628131021194
      • type: precision value: 81.1175337186898
      • type: recall value: 85.54913294797689
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 81.21951219512195
      • type: f1 value: 77.33333333333334
      • type: precision value: 75.54878048780488
      • type: recall value: 81.21951219512195
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 98.6
      • type: f1 value: 98.26666666666665
      • type: precision value: 98.1
      • type: recall value: 98.6
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 99.5
      • type: f1 value: 99.33333333333333
      • type: precision value: 99.25
      • type: recall value: 99.5
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.8
      • type: f1 value: 97.2
      • type: precision value: 96.89999999999999
      • type: recall value: 97.8
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.8
      • type: f1 value: 97.18333333333334
      • type: precision value: 96.88333333333333
      • type: recall value: 97.8
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 77.61194029850746
      • type: f1 value: 72.81094527363183
      • type: precision value: 70.83333333333333
      • type: recall value: 77.61194029850746
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 93.7
      • type: f1 value: 91.91666666666667
      • type: precision value: 91.08333333333334
      • type: recall value: 93.7
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 88.29268292682927
      • type: f1 value: 85.27642276422765
      • type: precision value: 84.01277584204414
      • type: recall value: 88.29268292682927
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (isl-eng) config: isl-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96.1
      • type: f1 value: 95.0
      • type: precision value: 94.46666666666668
      • type: recall value: 96.1
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (slv-eng) config: slv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 93.681652490887
      • type: f1 value: 91.90765492102065
      • type: precision value: 91.05913325232888
      • type: recall value: 93.681652490887
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cym-eng) config: cym-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 92.17391304347827
      • type: f1 value: 89.97101449275361
      • type: precision value: 88.96811594202899
      • type: recall value: 92.17391304347827
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kaz-eng) config: kaz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 90.43478260869566
      • type: f1 value: 87.72173913043478
      • type: precision value: 86.42028985507245
      • type: recall value: 90.43478260869566
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (est-eng) config: est-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 90.4
      • type: f1 value: 88.03
      • type: precision value: 86.95
      • type: recall value: 90.4
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (heb-eng) config: heb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 93.4
      • type: f1 value: 91.45666666666666
      • type: precision value: 90.525
      • type: recall value: 93.4
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gla-eng) config: gla-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 81.9059107358263
      • type: f1 value: 78.32557872364869
      • type: precision value: 76.78260286824823
      • type: recall value: 81.9059107358263
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mar-eng) config: mar-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 94.3
      • type: f1 value: 92.58333333333333
      • type: precision value: 91.73333333333332
      • type: recall value: 94.3
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lat-eng) config: lat-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 79.10000000000001
      • type: f1 value: 74.50500000000001
      • type: precision value: 72.58928571428571
      • type: recall value: 79.10000000000001
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bel-eng) config: bel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96.6
      • type: f1 value: 95.55
      • type: precision value: 95.05
      • type: recall value: 96.6
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pms-eng) config: pms-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 82.0952380952381
      • type: f1 value: 77.98458049886621
      • type: precision value: 76.1968253968254
      • type: recall value: 82.0952380952381
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gle-eng) config: gle-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 87.9
      • type: f1 value: 84.99190476190476
      • type: precision value: 83.65
      • type: recall value: 87.9
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (pes-eng) config: pes-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.7
      • type: f1 value: 94.56666666666666
      • type: precision value: 94.01666666666667
      • type: recall value: 95.7
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nob-eng) config: nob-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 98.6
      • type: f1 value: 98.2
      • type: precision value: 98.0
      • type: recall value: 98.6
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (bul-eng) config: bul-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.6
      • type: f1 value: 94.38333333333334
      • type: precision value: 93.78333333333335
      • type: recall value: 95.6
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cbk-eng) config: cbk-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 87.4
      • type: f1 value: 84.10380952380952
      • type: precision value: 82.67
      • type: recall value: 87.4
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hun-eng) config: hun-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.5
      • type: f1 value: 94.33333333333334
      • type: precision value: 93.78333333333333
      • type: recall value: 95.5
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uig-eng) config: uig-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 89.4
      • type: f1 value: 86.82000000000001
      • type: precision value: 85.64500000000001
      • type: recall value: 89.4
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (rus-eng) config: rus-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.1
      • type: f1 value: 93.56666666666668
      • type: precision value: 92.81666666666666
      • type: recall value: 95.1
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (spa-eng) config: spa-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 98.9
      • type: f1 value: 98.6
      • type: precision value: 98.45
      • type: recall value: 98.9
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hye-eng) config: hye-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.01347708894879
      • type: f1 value: 93.51752021563343
      • type: precision value: 92.82794249775381
      • type: recall value: 95.01347708894879
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tel-eng) config: tel-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.00854700854701
      • type: f1 value: 96.08262108262107
      • type: precision value: 95.65527065527067
      • type: recall value: 97.00854700854701
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (afr-eng) config: afr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96.5
      • type: f1 value: 95.39999999999999
      • type: precision value: 94.88333333333333
      • type: recall value: 96.5
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (mon-eng) config: mon-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96.5909090909091
      • type: f1 value: 95.49242424242425
      • type: precision value: 94.9621212121212
      • type: recall value: 96.5909090909091
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (arz-eng) config: arz-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 84.90566037735849
      • type: f1 value: 81.85883997204752
      • type: precision value: 80.54507337526205
      • type: recall value: 84.90566037735849
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (hrv-eng) config: hrv-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.5
      • type: f1 value: 96.75
      • type: precision value: 96.38333333333333
      • type: recall value: 97.5
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nov-eng) config: nov-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 86.7704280155642
      • type: f1 value: 82.99610894941635
      • type: precision value: 81.32295719844358
      • type: recall value: 86.7704280155642
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (gsw-eng) config: gsw-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 67.52136752136752
      • type: f1 value: 61.89662189662191
      • type: precision value: 59.68660968660969
      • type: recall value: 67.52136752136752
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nds-eng) config: nds-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 89.2
      • type: f1 value: 86.32
      • type: precision value: 85.015
      • type: recall value: 89.2
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ukr-eng) config: ukr-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96.0
      • type: f1 value: 94.78333333333333
      • type: precision value: 94.18333333333334
      • type: recall value: 96.0
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (uzb-eng) config: uzb-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 83.8785046728972
      • type: f1 value: 80.54517133956385
      • type: precision value: 79.154984423676
      • type: recall value: 83.8785046728972
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lit-eng) config: lit-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 93.60000000000001
      • type: f1 value: 92.01333333333334
      • type: precision value: 91.28333333333333
      • type: recall value: 93.60000000000001
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ina-eng) config: ina-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.1
      • type: f1 value: 96.26666666666667
      • type: precision value: 95.85000000000001
      • type: recall value: 97.1
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lfn-eng) config: lfn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 84.3
      • type: f1 value: 80.67833333333333
      • type: precision value: 79.03928571428571
      • type: recall value: 84.3
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (zsm-eng) config: zsm-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.3
      • type: f1 value: 96.48333333333332
      • type: precision value: 96.08333333333331
      • type: recall value: 97.3
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ita-eng) config: ita-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.7
      • type: f1 value: 94.66666666666667
      • type: precision value: 94.16666666666667
      • type: recall value: 95.7
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (cmn-eng) config: cmn-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.2
      • type: f1 value: 96.36666666666667
      • type: precision value: 95.96666666666668
      • type: recall value: 97.2
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (lvs-eng) config: lvs-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 94.3
      • type: f1 value: 92.80666666666667
      • type: precision value: 92.12833333333333
      • type: recall value: 94.3
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (glg-eng) config: glg-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.0
      • type: f1 value: 96.22333333333334
      • type: precision value: 95.875
      • type: recall value: 97.0
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ceb-eng)

[Content truncated...]

📝 Limitations & Considerations

  • Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • FNI scores are relative rankings and may change as new models are added.
  • License Unknown: Verify licensing terms before commercial use.
  • Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__intfloat__multilingual_e5_large_instruct,
  author = {intfloat},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/intfloat/multilingual-e5-large-instruct}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
intfloat. (2026). undefined [Model]. Free2AITools. https://huggingface.co/intfloat/multilingual-e5-large-instruct
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseℹ️ Verify with original source

🛡️ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--intfloat--multilingual-e5-large-instruct
author
intfloat
tags
sentence-transformersonnxsafetensorsxlm-robertafeature-extractionmtebtransformersmultilingualafamarasazbebgbnbrbscacscydadeeleneoeseteufafifrfygagdglguhahehihrhuhyidisitjajvkakkkmknkokukylaloltlvmgmkmlmnmrmsmynenlnoomorpaplpsptrorusasdsiskslsosqsrsusvswtatethtltrugukuruzvixhyizharxiv:2402.05672arxiv:2401.00368arxiv:2104.08663arxiv:2210.07316license:mitmodel-indextext-embeddings-inferenceendpoints_compatibleregion:us

⚙️ Technical Specs

architecture
XLMRobertaModel
params billions
0.56
context length
4,096
vram gb
1.7
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
582
downloads
1,284,364

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)