🧠

multilingual-e5-large

by intfloat Model ID: hf-model--intfloat--multilingual-e5-large
FNI 18.3
Top 74%
🔗 View Source
Audited 18.3 FNI Score
Tiny 0.56B Params
4k Context
Hot 3.3M Downloads
8G GPU ~2GB Est. VRAM

Quick Commands

🦙 Ollama Run
ollama run multilingual-e5-large
🤗 HF Download
huggingface-cli download intfloat/multilingual-e5-large
📊

Engineering Specs

Hardware

Parameters
0.56B
Architecture
XLMRobertaModel
Context Length
4K
Model Size
9.4GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~1.7GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

🔍 Semantic Keywords

🏷️ sentence-transformers 🏷️ pytorch 🏷️ onnx 🏷️ safetensors 🏷️ openvino 🏷️ xlm-roberta 🏷️ mteb 🏷️ sentence transformers 🏷️ sentence-similarity 🏷️ feature-extraction 🏷️ multilingual 🏷️ af 🏷️ am 🏷️ ar 🏷️ as 🏷️ az 🏷️ be 🏷️ bg 🏷️ bn 🏷️ br 🏷️ bs 🏷️ ca 🏷️ cs 🏷️ cy 🏷️ da 🏷️ de 🏷️ el 🏷️ en 🏷️ eo 🏷️ es 🏷️ et 🏷️ eu 🏷️ fa 🏷️ fi 🏷️ fr 🏷️ fy 🏷️ ga 🏷️ gd 🏷️ gl 🏷️ gu 🏷️ ha 🏷️ he 🏷️ hi 🏷️ hr 🏷️ hu 🏷️ hy 🏷️ id 🏷️ is 🏷️ it 🏷️ ja 🏷️ jv 🏷️ ka 🏷️ kk 🏷️ km 🏷️ kn 🏷️ ko 🏷️ ku 🏷️ ky 🏷️ la 🏷️ lo 🏷️ lt 🏷️ lv 🏷️ mg 🏷️ mk 🏷️ ml 🏷️ mn 🏷️ mr 🏷️ ms 🏷️ my 🏷️ ne 🏷️ nl 🏷️ no 🏷️ om 🏷️ or 🏷️ pa 🏷️ pl 🏷️ ps 🏷️ pt 🏷️ ro 🏷️ ru 🏷️ sa 🏷️ sd 🏷️ si 🏷️ sk 🏷️ sl 🏷️ so 🏷️ sq 🏷️ sr 🏷️ su 🏷️ sv 🏷️ sw 🏷️ ta 🏷️ te 🏷️ th 🏷️ tl 🏷️ tr 🏷️ ug 🏷️ uk 🏷️ ur 🏷️ uz 🏷️ vi 🏷️ xh 🏷️ yi 🏷️ zh 🏷️ arxiv:2402.05672 🏷️ arxiv:2108.08787 🏷️ arxiv:2104.08663 🏷️ arxiv:2210.07316 🏷️ license:mit 🏷️ model-index 🏷️ text-embeddings-inference 🏷️ endpoints_compatible 🏷️ deploy:azure 🏷️ region:us

No similar models found.

🔬Technical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

Quick Commands

🦙 Ollama Run
ollama run multilingual-e5-large
🤗 HF Download
huggingface-cli download intfloat/multilingual-e5-large
🖥️

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
💻 Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
🏗️ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
ℹ️

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

100,024 chars • Full Disclosure Protocol Active

ZEN MODE • README

tags:

  • mteb
  • Sentence Transformers
  • sentence-similarity
  • feature-extraction
  • sentence-transformers model-index:
  • name: multilingual-e5-large results:
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 79.05970149253731
      • type: ap value: 43.486574390835635
      • type: f1 value: 73.32700092140148
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (de) config: de split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 71.22055674518201
      • type: ap value: 81.55756710830498
      • type: f1 value: 69.28271787752661
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en-ext) config: en-ext split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 80.41979010494754
      • type: ap value: 29.34879922376344
      • type: f1 value: 67.62475449011278
    • task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (ja) config: ja split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics:
      • type: accuracy value: 77.8372591006424
      • type: ap value: 26.557560591210738
      • type: f1 value: 64.96619417368707
    • task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics:
      • type: accuracy value: 93.489875
      • type: ap value: 90.98758636917603
      • type: f1 value: 93.48554819717332
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 47.564
      • type: f1 value: 46.75122173518047
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (de) config: de split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 45.400000000000006
      • type: f1 value: 44.17195682400632
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (es) config: es split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 43.068
      • type: f1 value: 42.38155696855596
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (fr) config: fr split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 41.89
      • type: f1 value: 40.84407321682663
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (ja) config: ja split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 40.120000000000005
      • type: f1 value: 39.522976223819114
    • task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (zh) config: zh split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics:
      • type: accuracy value: 38.832
      • type: f1 value: 38.0392533394713
    • task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics:
      • type: map_at_1 value: 30.725
      • type: map_at_10 value: 46.055
      • type: map_at_100 value: 46.900999999999996
      • type: map_at_1000 value: 46.911
      • type: map_at_3 value: 41.548
      • type: map_at_5 value: 44.297
      • type: mrr_at_1 value: 31.152
      • type: mrr_at_10 value: 46.231
      • type: mrr_at_100 value: 47.07
      • type: mrr_at_1000 value: 47.08
      • type: mrr_at_3 value: 41.738
      • type: mrr_at_5 value: 44.468999999999994
      • type: ndcg_at_1 value: 30.725
      • type: ndcg_at_10 value: 54.379999999999995
      • type: ndcg_at_100 value: 58.138
      • type: ndcg_at_1000 value: 58.389
      • type: ndcg_at_3 value: 45.156
      • type: ndcg_at_5 value: 50.123
      • type: precision_at_1 value: 30.725
      • type: precision_at_10 value: 8.087
      • type: precision_at_100 value: 0.9769999999999999
      • type: precision_at_1000 value: 0.1
      • type: precision_at_3 value: 18.54
      • type: precision_at_5 value: 13.542000000000002
      • type: recall_at_1 value: 30.725
      • type: recall_at_10 value: 80.868
      • type: recall_at_100 value: 97.653
      • type: recall_at_1000 value: 99.57300000000001
      • type: recall_at_3 value: 55.619
      • type: recall_at_5 value: 67.71000000000001
    • task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics:
      • type: v_measure value: 44.30960650674069
    • task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics:
      • type: v_measure value: 38.427074197498996
    • task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics:
      • type: map value: 60.28270056031872
      • type: mrr value: 74.38332673789738
    • task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics:
      • type: cos_sim_pearson value: 84.05942144105269
      • type: cos_sim_spearman value: 82.51212105850809
      • type: euclidean_pearson value: 81.95639829909122
      • type: euclidean_spearman value: 82.3717564144213
      • type: manhattan_pearson value: 81.79273425468256
      • type: manhattan_spearman value: 82.20066817871039
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (de-en) config: de-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 99.46764091858039
      • type: f1 value: 99.37717466945023
      • type: precision value: 99.33194154488518
      • type: recall value: 99.46764091858039
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (fr-en) config: fr-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 98.29407880255337
      • type: f1 value: 98.11248073959938
      • type: precision value: 98.02443319392472
      • type: recall value: 98.29407880255337
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (ru-en) config: ru-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 97.79009352268791
      • type: f1 value: 97.5176076665512
      • type: precision value: 97.38136473848286
      • type: recall value: 97.79009352268791
    • task: type: BitextMining dataset: type: mteb/bucc-bitext-mining name: MTEB BUCC (zh-en) config: zh-en split: test revision: d51519689f32196a32af33b075a01d0e7c51e252 metrics:
      • type: accuracy value: 99.26276987888363
      • type: f1 value: 99.20133403545726
      • type: precision value: 99.17500438827453
      • type: recall value: 99.26276987888363
    • task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics:
      • type: accuracy value: 84.72727272727273
      • type: f1 value: 84.67672206031433
    • task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics:
      • type: v_measure value: 35.34220182511161
    • task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics:
      • type: v_measure value: 33.4987096128766
    • task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics:
      • type: map_at_1 value: 25.558249999999997
      • type: map_at_10 value: 34.44425000000001
      • type: map_at_100 value: 35.59833333333333
      • type: map_at_1000 value: 35.706916666666665
      • type: map_at_3 value: 31.691749999999995
      • type: map_at_5 value: 33.252916666666664
      • type: mrr_at_1 value: 30.252666666666666
      • type: mrr_at_10 value: 38.60675
      • type: mrr_at_100 value: 39.42666666666666
      • type: mrr_at_1000 value: 39.48408333333334
      • type: mrr_at_3 value: 36.17441666666665
      • type: mrr_at_5 value: 37.56275
      • type: ndcg_at_1 value: 30.252666666666666
      • type: ndcg_at_10 value: 39.683
      • type: ndcg_at_100 value: 44.68541666666667
      • type: ndcg_at_1000 value: 46.94316666666668
      • type: ndcg_at_3 value: 34.961749999999995
      • type: ndcg_at_5 value: 37.215666666666664
      • type: precision_at_1 value: 30.252666666666666
      • type: precision_at_10 value: 6.904166666666667
      • type: precision_at_100 value: 1.0989999999999995
      • type: precision_at_1000 value: 0.14733333333333334
      • type: precision_at_3 value: 16.037666666666667
      • type: precision_at_5 value: 11.413583333333333
      • type: recall_at_1 value: 25.558249999999997
      • type: recall_at_10 value: 51.13341666666666
      • type: recall_at_100 value: 73.08366666666667
      • type: recall_at_1000 value: 88.79483333333334
      • type: recall_at_3 value: 37.989083333333326
      • type: recall_at_5 value: 43.787833333333325
    • task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics:
      • type: map_at_1 value: 10.338
      • type: map_at_10 value: 18.360000000000003
      • type: map_at_100 value: 19.942
      • type: map_at_1000 value: 20.134
      • type: map_at_3 value: 15.174000000000001
      • type: map_at_5 value: 16.830000000000002
      • type: mrr_at_1 value: 23.257
      • type: mrr_at_10 value: 33.768
      • type: mrr_at_100 value: 34.707
      • type: mrr_at_1000 value: 34.766000000000005
      • type: mrr_at_3 value: 30.977
      • type: mrr_at_5 value: 32.528
      • type: ndcg_at_1 value: 23.257
      • type: ndcg_at_10 value: 25.733
      • type: ndcg_at_100 value: 32.288
      • type: ndcg_at_1000 value: 35.992000000000004
      • type: ndcg_at_3 value: 20.866
      • type: ndcg_at_5 value: 22.612
      • type: precision_at_1 value: 23.257
      • type: precision_at_10 value: 8.124
      • type: precision_at_100 value: 1.518
      • type: precision_at_1000 value: 0.219
      • type: precision_at_3 value: 15.679000000000002
      • type: precision_at_5 value: 12.117
      • type: recall_at_1 value: 10.338
      • type: recall_at_10 value: 31.154
      • type: recall_at_100 value: 54.161
      • type: recall_at_1000 value: 75.21900000000001
      • type: recall_at_3 value: 19.427
      • type: recall_at_5 value: 24.214
    • task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics:
      • type: map_at_1 value: 8.498
      • type: map_at_10 value: 19.103
      • type: map_at_100 value: 27.375
      • type: map_at_1000 value: 28.981
      • type: map_at_3 value: 13.764999999999999
      • type: map_at_5 value: 15.950000000000001
      • type: mrr_at_1 value: 65.5
      • type: mrr_at_10 value: 74.53800000000001
      • type: mrr_at_100 value: 74.71799999999999
      • type: mrr_at_1000 value: 74.725
      • type: mrr_at_3 value: 72.792
      • type: mrr_at_5 value: 73.554
      • type: ndcg_at_1 value: 53.37499999999999
      • type: ndcg_at_10 value: 41.286
      • type: ndcg_at_100 value: 45.972
      • type: ndcg_at_1000 value: 53.123
      • type: ndcg_at_3 value: 46.172999999999995
      • type: ndcg_at_5 value: 43.033
      • type: precision_at_1 value: 65.5
      • type: precision_at_10 value: 32.725
      • type: precision_at_100 value: 10.683
      • type: precision_at_1000 value: 1.978
      • type: precision_at_3 value: 50
      • type: precision_at_5 value: 41.349999999999994
      • type: recall_at_1 value: 8.498
      • type: recall_at_10 value: 25.070999999999998
      • type: recall_at_100 value: 52.383
      • type: recall_at_1000 value: 74.91499999999999
      • type: recall_at_3 value: 15.207999999999998
      • type: recall_at_5 value: 18.563
    • task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics:
      • type: accuracy value: 46.5
      • type: f1 value: 41.93833713984145
    • task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics:
      • type: map_at_1 value: 67.914
      • type: map_at_10 value: 78.10000000000001
      • type: map_at_100 value: 78.333
      • type: map_at_1000 value: 78.346
      • type: map_at_3 value: 76.626
      • type: map_at_5 value: 77.627
      • type: mrr_at_1 value: 72.74199999999999
      • type: mrr_at_10 value: 82.414
      • type: mrr_at_100 value: 82.511
      • type: mrr_at_1000 value: 82.513
      • type: mrr_at_3 value: 81.231
      • type: mrr_at_5 value: 82.065
      • type: ndcg_at_1 value: 72.74199999999999
      • type: ndcg_at_10 value: 82.806
      • type: ndcg_at_100 value: 83.677
      • type: ndcg_at_1000 value: 83.917
      • type: ndcg_at_3 value: 80.305
      • type: ndcg_at_5 value: 81.843
      • type: precision_at_1 value: 72.74199999999999
      • type: precision_at_10 value: 10.24
      • type: precision_at_100 value: 1.089
      • type: precision_at_1000 value: 0.11299999999999999
      • type: precision_at_3 value: 31.268
      • type: precision_at_5 value: 19.706000000000003
      • type: recall_at_1 value: 67.914
      • type: recall_at_10 value: 92.889
      • type: recall_at_100 value: 96.42699999999999
      • type: recall_at_1000 value: 97.92
      • type: recall_at_3 value: 86.21
      • type: recall_at_5 value: 90.036
    • task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics:
      • type: map_at_1 value: 22.166
      • type: map_at_10 value: 35.57
      • type: map_at_100 value: 37.405
      • type: map_at_1000 value: 37.564
      • type: map_at_3 value: 30.379
      • type: map_at_5 value: 33.324
      • type: mrr_at_1 value: 43.519000000000005
      • type: mrr_at_10 value: 51.556000000000004
      • type: mrr_at_100 value: 52.344
      • type: mrr_at_1000 value: 52.373999999999995
      • type: mrr_at_3 value: 48.868
      • type: mrr_at_5 value: 50.319
      • type: ndcg_at_1 value: 43.519000000000005
      • type: ndcg_at_10 value: 43.803
      • type: ndcg_at_100 value: 50.468999999999994
      • type: ndcg_at_1000 value: 53.111
      • type: ndcg_at_3 value: 38.893
      • type: ndcg_at_5 value: 40.653
      • type: precision_at_1 value: 43.519000000000005
      • type: precision_at_10 value: 12.253
      • type: precision_at_100 value: 1.931
      • type: precision_at_1000 value: 0.242
      • type: precision_at_3 value: 25.617
      • type: precision_at_5 value: 19.383
      • type: recall_at_1 value: 22.166
      • type: recall_at_10 value: 51.6
      • type: recall_at_100 value: 76.574
      • type: recall_at_1000 value: 92.192
      • type: recall_at_3 value: 34.477999999999994
      • type: recall_at_5 value: 41.835
    • task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics:
      • type: map_at_1 value: 39.041
      • type: map_at_10 value: 62.961999999999996
      • type: map_at_100 value: 63.79899999999999
      • type: map_at_1000 value: 63.854
      • type: map_at_3 value: 59.399
      • type: map_at_5 value: 61.669
      • type: mrr_at_1 value: 78.082
      • type: mrr_at_10 value: 84.321
      • type: mrr_at_100 value: 84.49600000000001
      • type: mrr_at_1000 value: 84.502
      • type: mrr_at_3 value: 83.421
      • type: mrr_at_5 value: 83.977
      • type: ndcg_at_1 value: 78.082
      • type: ndcg_at_10 value: 71.229
      • type: ndcg_at_100 value: 74.10900000000001
      • type: ndcg_at_1000 value: 75.169
      • type: ndcg_at_3 value: 66.28699999999999
      • type: ndcg_at_5 value: 69.084
      • type: precision_at_1 value: 78.082
      • type: precision_at_10 value: 14.993
      • type: precision_at_100 value: 1.7239999999999998
      • type: precision_at_1000 value: 0.186
      • type: precision_at_3 value: 42.737
      • type: precision_at_5 value: 27.843
      • type: recall_at_1 value: 39.041
      • type: recall_at_10 value: 74.96300000000001
      • type: recall_at_100 value: 86.199
      • type: recall_at_1000 value: 93.228
      • type: recall_at_3 value: 64.105
      • type: recall_at_5 value: 69.608
    • task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics:
      • type: accuracy value: 90.23160000000001
      • type: ap value: 85.5674856808308
      • type: f1 value: 90.18033354786317
    • task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics:
      • type: map_at_1 value: 24.091
      • type: map_at_10 value: 36.753
      • type: map_at_100 value: 37.913000000000004
      • type: map_at_1000 value: 37.958999999999996
      • type: map_at_3 value: 32.818999999999996
      • type: map_at_5 value: 35.171
      • type: mrr_at_1 value: 24.742
      • type: mrr_at_10 value: 37.285000000000004
      • type: mrr_at_100 value: 38.391999999999996
      • type: mrr_at_1000 value: 38.431
      • type: mrr_at_3 value: 33.440999999999995
      • type: mrr_at_5 value: 35.75
      • type: ndcg_at_1 value: 24.742
      • type: ndcg_at_10 value: 43.698
      • type: ndcg_at_100 value: 49.145
      • type: ndcg_at_1000 value: 50.23800000000001
      • type: ndcg_at_3 value: 35.769
      • type: ndcg_at_5 value: 39.961999999999996
      • type: precision_at_1 value: 24.742
      • type: precision_at_10 value: 6.7989999999999995
      • type: precision_at_100 value: 0.95
      • type: precision_at_1000 value: 0.104
      • type: precision_at_3 value: 15.096000000000002
      • type: precision_at_5 value: 11.183
      • type: recall_at_1 value: 24.091
      • type: recall_at_10 value: 65.068
      • type: recall_at_100 value: 89.899
      • type: recall_at_1000 value: 98.16
      • type: recall_at_3 value: 43.68
      • type: recall_at_5 value: 53.754999999999995
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 93.66621067031465
      • type: f1 value: 93.49622853272142
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (de) config: de split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 91.94702733164272
      • type: f1 value: 91.17043441745282
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (es) config: es split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 92.20146764509674
      • type: f1 value: 91.98359080555608
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (fr) config: fr split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 88.99780770435328
      • type: f1 value: 89.19746342724068
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (hi) config: hi split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 89.78486912871998
      • type: f1 value: 89.24578823628642
    • task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (th) config: th split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics:
      • type: accuracy value: 88.74502712477394
      • type: f1 value: 89.00297573881542
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 77.9046967624259
      • type: f1 value: 59.36787125785957
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (de) config: de split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 74.5280360664976
      • type: f1 value: 57.17723440888718
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (es) config: es split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 75.44029352901934
      • type: f1 value: 54.052855531072964
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (fr) config: fr split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 70.5606013153774
      • type: f1 value: 52.62215934386531
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (hi) config: hi split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 73.11581211903908
      • type: f1 value: 52.341291845645465
    • task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (th) config: th split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics:
      • type: accuracy value: 74.28933092224233
      • type: f1 value: 57.07918745504911
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (af) config: af split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 62.38063214525892
      • type: f1 value: 59.46463723443009
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (am) config: am split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 56.06926698049766
      • type: f1 value: 52.49084283283562
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ar) config: ar split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 60.74983187626093
      • type: f1 value: 56.960640620165904
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (az) config: az split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 64.86550100874243
      • type: f1 value: 62.47370548140688
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (bn) config: bn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.971082716879636
      • type: f1 value: 61.03812421957381
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (cy) config: cy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 54.98318762609282
      • type: f1 value: 51.51207916008392
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (da) config: da split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.45527908540686
      • type: f1 value: 66.16631905400318
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (de) config: de split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.32750504371216
      • type: f1 value: 66.16755288646591
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (el) config: el split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.09213180901143
      • type: f1 value: 66.95654394661507
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 73.75588433086752
      • type: f1 value: 71.79973779656923
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (es) config: es split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.49428379287154
      • type: f1 value: 68.37494379215734
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fa) config: fa split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.90921318090115
      • type: f1 value: 66.79517376481645
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fi) config: fi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.12104909213181
      • type: f1 value: 67.29448842879584
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (fr) config: fr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.34095494283793
      • type: f1 value: 67.01134288992947
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (he) config: he split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.61264290517822
      • type: f1 value: 64.68730512660757
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hi) config: hi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.79757901815738
      • type: f1 value: 65.24938539425598
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hu) config: hu split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.68728984532616
      • type: f1 value: 67.0487169762553
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (hy) config: hy split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 62.07464694014795
      • type: f1 value: 59.183532276789286
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (id) config: id split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.04707464694015
      • type: f1 value: 67.66829629003848
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (is) config: is split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 62.42434431741762
      • type: f1 value: 59.01617226544757
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (it) config: it split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.53127101546738
      • type: f1 value: 68.10033760906255
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ja) config: ja split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 72.50504371217215
      • type: f1 value: 69.74931103158923
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (jv) config: jv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 57.91190316072628
      • type: f1 value: 54.05551136648796
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ka) config: ka split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 51.78211163416275
      • type: f1 value: 49.874888544058535
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (km) config: km split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 47.017484868863484
      • type: f1 value: 44.53364263352014
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (kn) config: kn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 62.16207128446537
      • type: f1 value: 59.01185692320829
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ko) config: ko split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.42501681237391
      • type: f1 value: 67.13169450166086
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (lv) config: lv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.0780094149294
      • type: f1 value: 64.41720167850707
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ml) config: ml split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 65.57162071284466
      • type: f1 value: 62.414138683804424
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (mn) config: mn split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 61.71149966375252
      • type: f1 value: 58.594805125087234
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ms) config: ms split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 66.03900470746471
      • type: f1 value: 63.87937257883887
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (my) config: my split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 60.8776059179556
      • type: f1 value: 57.48587618059131
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nb) config: nb split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.87895090786819
      • type: f1 value: 66.8141299430347
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (nl) config: nl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.45057162071285
      • type: f1 value: 67.46444039673516
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pl) config: pl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.546738399462
      • type: f1 value: 68.63640876702655
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (pt) config: pt split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 70.72965702757229
      • type: f1 value: 68.54119560379115
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ro) config: ro split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 68.35574983187625
      • type: f1 value: 65.88844917691927
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ru) config: ru split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.70477471418964
      • type: f1 value: 69.19665697061978
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sl) config: sl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 67.0880968392737
      • type: f1 value: 64.76962317666086
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sq) config: sq split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 65.18493611297916
      • type: f1 value: 62.49984559035371
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sv) config: sv split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.75857431069265
      • type: f1 value: 69.20053687623418
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (sw) config: sw split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 58.500336247478145
      • type: f1 value: 55.2972398687929
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ta) config: ta split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 62.68997982515132
      • type: f1 value: 59.36848202755348
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (te) config: te split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 63.01950235373235
      • type: f1 value: 60.09351954625423
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (th) config: th split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 68.29186281102892
      • type: f1 value: 67.57860496703447
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tl) config: tl split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 64.77471418964357
      • type: f1 value: 61.913983147713836
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (tr) config: tr split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.87222595830532
      • type: f1 value: 66.03679033708141
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (ur) config: ur split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 64.04505716207127
      • type: f1 value: 61.28569169817908
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (vi) config: vi split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 69.38466711499663
      • type: f1 value: 67.20532357036844
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-CN) config: zh-CN split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 71.12306657700067
      • type: f1 value: 68.91251226588182
    • task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (zh-TW) config: zh-TW split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics:
      • type: accuracy value: 66.20040349697378
      • type: f1 value: 66.02657347714175
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (af) config: af split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 68.73907195696032
      • type: f1 value: 66.98484521791418
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (am) config: am split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 60.58843308675185
      • type: f1 value: 58.95591723092005
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ar) config: ar split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.22730329522528
      • type: f1 value: 66.0894499712115
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (az) config: az split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.48285137861465
      • type: f1 value: 65.21963176785157
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (bn) config: bn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 67.74714189643578
      • type: f1 value: 66.8212192745412
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (cy) config: cy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 59.09213180901143
      • type: f1 value: 56.70735546356339
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (da) config: da split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.05716207128448
      • type: f1 value: 74.8413712365364
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (de) config: de split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.69737726967047
      • type: f1 value: 74.7664341963
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (el) config: el split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.90383322125084
      • type: f1 value: 73.59201554448323
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.51176866173503
      • type: f1 value: 77.46104434577758
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (es) config: es split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.31069266980496
      • type: f1 value: 74.61048660675635
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fa) config: fa split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.95225285810356
      • type: f1 value: 72.33160006574627
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fi) config: fi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.12373907195696
      • type: f1 value: 73.20921012557481
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (fr) config: fr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.86684599865501
      • type: f1 value: 73.82348774610831
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (he) config: he split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.40215198386012
      • type: f1 value: 71.11945183971858
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hi) config: hi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 72.12844653665098
      • type: f1 value: 71.34450495911766
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hu) config: hu split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.52252858103566
      • type: f1 value: 73.98878711342999
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (hy) config: hy split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 64.93611297915265
      • type: f1 value: 63.723200467653385
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (id) config: id split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.11903160726295
      • type: f1 value: 73.82138439467096
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (is) config: is split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 67.15198386012105
      • type: f1 value: 66.02172193802167
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (it) config: it split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.32414256893072
      • type: f1 value: 74.30943421170574
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ja) config: ja split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 77.46805648957633
      • type: f1 value: 77.62808409298209
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (jv) config: jv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 63.318762609280434
      • type: f1 value: 62.094284066075076
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ka) config: ka split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 58.34902488231338
      • type: f1 value: 57.12893860987984
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (km) config: km split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 50.88433086751849
      • type: f1 value: 48.2272350802058
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (kn) config: kn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.4425016812374
      • type: f1 value: 64.61463095996173
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ko) config: ko split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.04707464694015
      • type: f1 value: 75.05099199098998
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (lv) config: lv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 70.50437121721586
      • type: f1 value: 69.83397721096314
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ml) config: ml split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 69.94283792871553
      • type: f1 value: 68.8704663703913
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (mn) config: mn split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 64.79488903833222
      • type: f1 value: 63.615424063345436
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ms) config: ms split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 69.88231338264963
      • type: f1 value: 68.57892302593237
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (my) config: my split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 63.248150638870214
      • type: f1 value: 61.06680605338809
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nb) config: nb split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.84196368527236
      • type: f1 value: 74.52566464968763
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (nl) config: nl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.8285137861466
      • type: f1 value: 74.8853197608802
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pl) config: pl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 74.13248150638869
      • type: f1 value: 74.3982040999179
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (pt) config: pt split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.49024882313383
      • type: f1 value: 73.82153848368573
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ro) config: ro split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.72158708809684
      • type: f1 value: 71.85049433180541
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ru) config: ru split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 75.137861466039
      • type: f1 value: 75.37628348188467
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sl) config: sl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.86953597848016
      • type: f1 value: 71.87537624521661
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sq) config: sq split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 70.27572293207801
      • type: f1 value: 68.80017302344231
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sv) config: sv split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.09952925353059
      • type: f1 value: 76.07992707688408
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (sw) config: sw split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 63.140551445864155
      • type: f1 value: 61.73855010331415
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ta) config: ta split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.27774041694687
      • type: f1 value: 64.83664868894539
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (te) config: te split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 66.69468728984533
      • type: f1 value: 64.76239666920868
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (th) config: th split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.44653665097512
      • type: f1 value: 73.14646052013873
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tl) config: tl split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 67.71351714862139
      • type: f1 value: 66.67212180163382
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (tr) config: tr split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.9946200403497
      • type: f1 value: 73.87348793725525
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (ur) config: ur split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 68.15400134498992
      • type: f1 value: 67.09433241421094
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (vi) config: vi split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 73.11365164761264
      • type: f1 value: 73.59502539433753
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-CN) config: zh-CN split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 76.82582380632145
      • type: f1 value: 76.89992945316313
    • task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (zh-TW) config: zh-TW split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics:
      • type: accuracy value: 71.81237390719569
      • type: f1 value: 72.36499770986265
    • task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics:
      • type: v_measure value: 31.480506569594695
    • task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics:
      • type: v_measure value: 29.71252128004552
    • task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics:
      • type: map value: 31.421396787056548
      • type: mrr value: 32.48155274872267
    • task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics:
      • type: map_at_1 value: 5.595
      • type: map_at_10 value: 12.642000000000001
      • type: map_at_100 value: 15.726
      • type: map_at_1000 value: 17.061999999999998
      • type: map_at_3 value: 9.125
      • type: map_at_5 value: 10.866000000000001
      • type: mrr_at_1 value: 43.344
      • type: mrr_at_10 value: 52.227999999999994
      • type: mrr_at_100 value: 52.898999999999994
      • type: mrr_at_1000 value: 52.944
      • type: mrr_at_3 value: 49.845
      • type: mrr_at_5 value: 51.115
      • type: ndcg_at_1 value: 41.949999999999996
      • type: ndcg_at_10 value: 33.995
      • type: ndcg_at_100 value: 30.869999999999997
      • type: ndcg_at_1000 value: 39.487
      • type: ndcg_at_3 value: 38.903999999999996
      • type: ndcg_at_5 value: 37.236999999999995
      • type: precision_at_1 value: 43.344
      • type: precision_at_10 value: 25.480000000000004
      • type: precision_at_100 value: 7.672
      • type: precision_at_1000 value: 2.028
      • type: precision_at_3 value: 36.636
      • type: precision_at_5 value: 32.632
      • type: recall_at_1 value: 5.595
      • type: recall_at_10 value: 16.466
      • type: recall_at_100 value: 31.226
      • type: recall_at_1000 value: 62.778999999999996
      • type: recall_at_3 value: 9.931
      • type: recall_at_5 value: 12.884
    • task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics:
      • type: map_at_1 value: 40.414
      • type: map_at_10 value: 56.754000000000005
      • type: map_at_100 value: 57.457
      • type: map_at_1000 value: 57.477999999999994
      • type: map_at_3 value: 52.873999999999995
      • type: map_at_5 value: 55.175
      • type: mrr_at_1 value: 45.278
      • type: mrr_at_10 value: 59.192
      • type: mrr_at_100 value: 59.650000000000006
      • type: mrr_at_1000 value: 59.665
      • type: mrr_at_3 value: 56.141
      • type: mrr_at_5 value: 57.998000000000005
      • type: ndcg_at_1 value: 45.278
      • type: ndcg_at_10 value: 64.056
      • type: ndcg_at_100 value: 66.89
      • type: ndcg_at_1000 value: 67.364
      • type: ndcg_at_3 value: 56.97
      • type: ndcg_at_5 value: 60.719
      • type: precision_at_1 value: 45.278
      • type: precision_at_10 value: 9.994
      • type: precision_at_100 value: 1.165
      • type: precision_at_1000 value: 0.121
      • type: precision_at_3 value: 25.512
      • type: precision_at_5 value: 17.509
      • type: recall_at_1 value: 40.414
      • type: recall_at_10 value: 83.596
      • type: recall_at_100 value: 95.72
      • type: recall_at_1000 value: 99.24
      • type: recall_at_3 value: 65.472
      • type: recall_at_5 value: 74.039
    • task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics:
      • type: map_at_1 value: 70.352
      • type: map_at_10 value: 84.369
      • type: map_at_100 value: 85.02499999999999
      • type: map_at_1000 value: 85.04
      • type: map_at_3 value: 81.42399999999999
      • type: map_at_5 value: 83.279
      • type: mrr_at_1 value: 81.05
      • type: mrr_at_10 value: 87.401
      • type: mrr_at_100 value: 87.504
      • type: mrr_at_1000 value: 87.505
      • type: mrr_at_3 value: 86.443
      • type: mrr_at_5 value: 87.10799999999999
      • type: ndcg_at_1 value: 81.04
      • type: ndcg_at_10 value: 88.181
      • type: ndcg_at_100 value: 89.411
      • type: ndcg_at_1000 value: 89.507
      • type: ndcg_at_3 value: 85.28099999999999
      • type: ndcg_at_5 value: 86.888
      • type: precision_at_1 value: 81.04
      • type: precision_at_10 value: 13.406
      • type: precision_at_100 value: 1.5350000000000001
      • type: precision_at_1000 value: 0.157
      • type: precision_at_3 value: 37.31
      • type: precision_at_5 value: 24.54
      • type: recall_at_1 value: 70.352
      • type: recall_at_10 value: 95.358
      • type: recall_at_100 value: 99.541
      • type: recall_at_1000 value: 99.984
      • type: recall_at_3 value: 87.111
      • type: recall_at_5 value: 91.643
    • task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics:
      • type: v_measure value: 46.54068723291946
    • task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics:
      • type: v_measure value: 63.216287629895994
    • task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics:
      • type: map_at_1 value: 4.023000000000001
      • type: map_at_10 value: 10.071
      • type: map_at_100 value: 11.892
      • type: map_at_1000 value: 12.196
      • type: map_at_3 value: 7.234
      • type: map_at_5 value: 8.613999999999999
      • type: mrr_at_1 value: 19.900000000000002
      • type: mrr_at_10 value: 30.516
      • type: mrr_at_100 value: 31.656000000000002
      • type: mrr_at_1000 value: 31.723000000000003
      • type: mrr_at_3 value: 27.400000000000002
      • type: mrr_at_5 value: 29.270000000000003
      • type: ndcg_at_1 value: 19.900000000000002
      • type: ndcg_at_10 value: 17.474
      • type: ndcg_at_100 value: 25.020999999999997
      • type: ndcg_at_1000 value: 30.728
      • type: ndcg_at_3 value: 16.588
      • type: ndcg_at_5 value: 14.498
      • type: precision_at_1 value: 19.900000000000002
      • type: precision_at_10 value: 9.139999999999999
      • type: precision_at_100 value: 2.011
      • type: precision_at_1000 value: 0.33899999999999997
      • type: precision_at_3 value: 15.667
      • type: precision_at_5 value: 12.839999999999998
      • type: recall_at_1 value: 4.023000000000001
      • type: recall_at_10 value: 18.497
      • type: recall_at_100 value: 40.8
      • type: recall_at_1000 value: 68.812
      • type: recall_at_3 value: 9.508
      • type: recall_at_5 value: 12.983
    • task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics:
      • type: cos_sim_pearson value: 83.967008785134
      • type: cos_sim_spearman value: 80.23142141101837
      • type: euclidean_pearson value: 81.20166064704539
      • type: euclidean_spearman value: 80.18961335654585
      • type: manhattan_pearson value: 81.13925443187625
      • type: manhattan_spearman value: 80.07948723044424
    • task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics:
      • type: cos_sim_pearson value: 86.94262461316023
      • type: cos_sim_spearman value: 80.01596278563865
      • type: euclidean_pearson value: 83.80799622922581
      • type: euclidean_spearman value: 79.94984954947103
      • type: manhattan_pearson value: 83.68473841756281
      • type: manhattan_spearman value: 79.84990707951822
    • task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics:
      • type: cos_sim_pearson value: 80.57346443146068
      • type: cos_sim_spearman value: 81.54689837570866
      • type: euclidean_pearson value: 81.10909881516007
      • type: euclidean_spearman value: 81.56746243261762
      • type: manhattan_pearson value: 80.87076036186582
      • type: manhattan_spearman value: 81.33074987964402
    • task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics:
      • type: cos_sim_pearson value: 79.54733787179849
      • type: cos_sim_spearman value: 77.72202105610411
      • type: euclidean_pearson value: 78.9043595478849
      • type: euclidean_spearman value: 77.93422804309435
      • type: manhattan_pearson value: 78.58115121621368
      • type: manhattan_spearman value: 77.62508135122033
    • task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics:
      • type: cos_sim_pearson value: 88.59880017237558
      • type: cos_sim_spearman value: 89.31088630824758
      • type: euclidean_pearson value: 88.47069261564656
      • type: euclidean_spearman value: 89.33581971465233
      • type: manhattan_pearson value: 88.40774264100956
      • type: manhattan_spearman value: 89.28657485627835
    • task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics:
      • type: cos_sim_pearson value: 84.08055117917084
      • type: cos_sim_spearman value: 85.78491813080304
      • type: euclidean_pearson value: 84.99329155500392
      • type: euclidean_spearman value: 85.76728064677287
      • type: manhattan_pearson value: 84.87947428989587
      • type: manhattan_spearman value: 85.62429454917464
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ko-ko) config: ko-ko split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 82.14190939287384
      • type: cos_sim_spearman value: 82.27331573306041
      • type: euclidean_pearson value: 81.891896953716
      • type: euclidean_spearman value: 82.37695542955998
      • type: manhattan_pearson value: 81.73123869460504
      • type: manhattan_spearman value: 82.19989168441421
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (ar-ar) config: ar-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 76.84695301843362
      • type: cos_sim_spearman value: 77.87790986014461
      • type: euclidean_pearson value: 76.91981583106315
      • type: euclidean_spearman value: 77.88154772749589
      • type: manhattan_pearson value: 76.94953277451093
      • type: manhattan_spearman value: 77.80499230728604
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-ar) config: en-ar split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 75.44657840482016
      • type: cos_sim_spearman value: 75.05531095119674
      • type: euclidean_pearson value: 75.88161755829299
      • type: euclidean_spearman value: 74.73176238219332
      • type: manhattan_pearson value: 75.63984765635362
      • type: manhattan_spearman value: 74.86476440770737
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-de) config: en-de split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 85.64700140524133
      • type: cos_sim_spearman value: 86.16014210425672
      • type: euclidean_pearson value: 86.49086860843221
      • type: euclidean_spearman value: 86.09729326815614
      • type: manhattan_pearson value: 86.43406265125513
      • type: manhattan_spearman value: 86.17740150939994
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 87.91170098764921
      • type: cos_sim_spearman value: 88.12437004058931
      • type: euclidean_pearson value: 88.81828254494437
      • type: euclidean_spearman value: 88.14831794572122
      • type: manhattan_pearson value: 88.93442183448961
      • type: manhattan_spearman value: 88.15254630778304
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-tr) config: en-tr split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 72.91390577997292
      • type: cos_sim_spearman value: 71.22979457536074
      • type: euclidean_pearson value: 74.40314008106749
      • type: euclidean_spearman value: 72.54972136083246
      • type: manhattan_pearson value: 73.85687539530218
      • type: manhattan_spearman value: 72.09500771742637
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-en) config: es-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 80.9301067983089
      • type: cos_sim_spearman value: 80.74989828346473
      • type: euclidean_pearson value: 81.36781301814257
      • type: euclidean_spearman value: 80.9448819964426
      • type: manhattan_pearson value: 81.0351322685609
      • type: manhattan_spearman value: 80.70192121844177
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (es-es) config: es-es split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 87.13820465980005
      • type: cos_sim_spearman value: 86.73532498758757
      • type: euclidean_pearson value: 87.21329451846637
      • type: euclidean_spearman value: 86.57863198601002
      • type: manhattan_pearson value: 87.06973713818554
      • type: manhattan_spearman value: 86.47534918791499
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (fr-en) config: fr-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 85.48720108904415
      • type: cos_sim_spearman value: 85.62221757068387
      • type: euclidean_pearson value: 86.1010129512749
      • type: euclidean_spearman value: 85.86580966509942
      • type: manhattan_pearson value: 86.26800938808971
      • type: manhattan_spearman value: 85.88902721678429
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (it-en) config: it-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 83.98021347333516
      • type: cos_sim_spearman value: 84.53806553803501
      • type: euclidean_pearson value: 84.61483347248364
      • type: euclidean_spearman value: 85.14191408011702
      • type: manhattan_pearson value: 84.75297588825967
      • type: manhattan_spearman value: 85.33176753669242
    • task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (nl-en) config: nl-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics:
      • type: cos_sim_pearson value: 84.51856644893233
      • type: cos_sim_spearman value: 85.27510748506413
      • type: euclidean_pearson value: 85.09886861540977
      • type: euclidean_spearman value: 85.62579245860887
      • type: manhattan_pearson value: 84.93017860464607
      • type: manhattan_spearman value: 85.5063988898453
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 62.581573200584195
      • type: cos_sim_spearman value: 63.05503590247928
      • type: euclidean_pearson value: 63.652564812602094
      • type: euclidean_spearman value: 62.64811520876156
      • type: manhattan_pearson value: 63.506842893061076
      • type: manhattan_spearman value: 62.51289573046917
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de) config: de split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 48.2248801729127
      • type: cos_sim_spearman value: 56.5936604678561
      • type: euclidean_pearson value: 43.98149464089
      • type: euclidean_spearman value: 56.108561882423615
      • type: manhattan_pearson value: 43.86880305903564
      • type: manhattan_spearman value: 56.04671150510166
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es) config: es split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 55.17564527009831
      • type: cos_sim_spearman value: 64.57978560979488
      • type: euclidean_pearson value: 58.8818330154583
      • type: euclidean_spearman value: 64.99214839071281
      • type: manhattan_pearson value: 58.72671436121381
      • type: manhattan_spearman value: 65.10713416616109
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl) config: pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 26.772131864023297
      • type: cos_sim_spearman value: 34.68200792408681
      • type: euclidean_pearson value: 16.68082419005441
      • type: euclidean_spearman value: 34.83099932652166
      • type: manhattan_pearson value: 16.52605949659529
      • type: manhattan_spearman value: 34.82075801399475
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (tr) config: tr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 54.42415189043831
      • type: cos_sim_spearman value: 63.54594264576758
      • type: euclidean_pearson value: 57.36577498297745
      • type: euclidean_spearman value: 63.111466379158074
      • type: manhattan_pearson value: 57.584543715873885
      • type: manhattan_spearman value: 63.22361054139183
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ar) config: ar split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 47.55216762405518
      • type: cos_sim_spearman value: 56.98670142896412
      • type: euclidean_pearson value: 50.15318757562699
      • type: euclidean_spearman value: 56.524941926541906
      • type: manhattan_pearson value: 49.955618528674904
      • type: manhattan_spearman value: 56.37102209240117
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (ru) config: ru split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 49.20540980338571
      • type: cos_sim_spearman value: 59.9009453504406
      • type: euclidean_pearson value: 49.557749853620535
      • type: euclidean_spearman value: 59.76631621172456
      • type: manhattan_pearson value: 49.62340591181147
      • type: manhattan_spearman value: 59.94224880322436
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh) config: zh split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 51.508169956576985
      • type: cos_sim_spearman value: 66.82461565306046
      • type: euclidean_pearson value: 56.2274426480083
      • type: euclidean_spearman value: 66.6775323848333
      • type: manhattan_pearson value: 55.98277796300661
      • type: manhattan_spearman value: 66.63669848497175
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr) config: fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 72.86478788045507
      • type: cos_sim_spearman value: 76.7946552053193
      • type: euclidean_pearson value: 75.01598530490269
      • type: euclidean_spearman value: 76.83618917858281
      • type: manhattan_pearson value: 74.68337628304332
      • type: manhattan_spearman value: 76.57480204017773
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-en) config: de-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 55.922619099401984
      • type: cos_sim_spearman value: 56.599362477240774
      • type: euclidean_pearson value: 56.68307052369783
      • type: euclidean_spearman value: 54.28760436777401
      • type: manhattan_pearson value: 56.67763566500681
      • type: manhattan_spearman value: 53.94619541711359
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-en) config: es-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 66.74357206710913
      • type: cos_sim_spearman value: 72.5208244925311
      • type: euclidean_pearson value: 67.49254562186032
      • type: euclidean_spearman value: 72.02469076238683
      • type: manhattan_pearson value: 67.45251772238085
      • type: manhattan_spearman value: 72.05538819984538
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (it) config: it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 71.25734330033191
      • type: cos_sim_spearman value: 76.98349083946823
      • type: euclidean_pearson value: 73.71642838667736
      • type: euclidean_spearman value: 77.01715504651384
      • type: manhattan_pearson value: 73.61712711868105
      • type: manhattan_spearman value: 77.01392571153896
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (pl-en) config: pl-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 63.18215462781212
      • type: cos_sim_spearman value: 65.54373266117607
      • type: euclidean_pearson value: 64.54126095439005
      • type: euclidean_spearman value: 65.30410369102711
      • type: manhattan_pearson value: 63.50332221148234
      • type: manhattan_spearman value: 64.3455878104313
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (zh-en) config: zh-en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 62.30509221440029
      • type: cos_sim_spearman value: 65.99582704642478
      • type: euclidean_pearson value: 63.43818859884195
      • type: euclidean_spearman value: 66.83172582815764
      • type: manhattan_pearson value: 63.055779168508764
      • type: manhattan_spearman value: 65.49585020501449
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (es-it) config: es-it split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 59.587830825340404
      • type: cos_sim_spearman value: 68.93467614588089
      • type: euclidean_pearson value: 62.3073527367404
      • type: euclidean_spearman value: 69.69758171553175
      • type: manhattan_pearson value: 61.9074580815789
      • type: manhattan_spearman value: 69.57696375597865
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-fr) config: de-fr split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 57.143220125577066
      • type: cos_sim_spearman value: 67.78857859159226
      • type: euclidean_pearson value: 55.58225107923733
      • type: euclidean_spearman value: 67.80662907184563
      • type: manhattan_pearson value: 56.24953502726514
      • type: manhattan_spearman value: 67.98262125431616
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (de-pl) config: de-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 21.826928900322066
      • type: cos_sim_spearman value: 49.578506634400405
      • type: euclidean_pearson value: 27.939890138843214
      • type: euclidean_spearman value: 52.71950519136242
      • type: manhattan_pearson value: 26.39878683847546
      • type: manhattan_spearman value: 47.54609580342499
    • task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (fr-pl) config: fr-pl split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics:
      • type: cos_sim_pearson value: 57.27603854632001
      • type: cos_sim_spearman value: 50.709255283710995
      • type: euclidean_pearson value: 59.5419024445929
      • type: euclidean_spearman value: 50.709255283710995
      • type: manhattan_pearson value: 59.03256832438492
      • type: manhattan_spearman value: 61.97797868009122
    • task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics:
      • type: cos_sim_pearson value: 85.00757054859712
      • type: cos_sim_spearman value: 87.29283629622222
      • type: euclidean_pearson value: 86.54824171775536
      • type: euclidean_spearman value: 87.24364730491402
      • type: manhattan_pearson value: 86.5062156915074
      • type: manhattan_spearman value: 87.15052170378574
    • task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics:
      • type: map value: 82.03549357197389
      • type: mrr value: 95.05437645143527
    • task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics:
      • type: map_at_1 value: 57.260999999999996
      • type: map_at_10 value: 66.259
      • type: map_at_100 value: 66.884
      • type: map_at_1000 value: 66.912
      • type: map_at_3 value: 63.685
      • type: map_at_5 value: 65.35499999999999
      • type: mrr_at_1 value: 60.333000000000006
      • type: mrr_at_10 value: 67.5
      • type: mrr_at_100 value: 68.013
      • type: mrr_at_1000 value: 68.038
      • type: mrr_at_3 value: 65.61099999999999
      • type: mrr_at_5 value: 66.861
      • type: ndcg_at_1 value: 60.333000000000006
      • type: ndcg_at_10 value: 70.41
      • type: ndcg_at_100 value: 73.10600000000001
      • type: ndcg_at_1000 value: 73.846
      • type: ndcg_at_3 value: 66.133
      • type: ndcg_at_5 value: 68.499
      • type: precision_at_1 value: 60.333000000000006
      • type: precision_at_10 value: 9.232999999999999
      • type: precision_at_100 value: 1.0630000000000002
      • type: precision_at_1000 value: 0.11299999999999999
      • type: precision_at_3 value: 25.667
      • type: precision_at_5 value: 17.067
      • type: recall_at_1 value: 57.260999999999996
      • type: recall_at_10 value: 81.94399999999999
      • type: recall_at_100 value: 93.867
      • type: recall_at_1000 value: 99.667
      • type: recall_at_3 value: 70.339
      • type: recall_at_5 value: 76.25
    • task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics:
      • type: cos_sim_accuracy value: 99.74356435643564
      • type: cos_sim_ap value: 93.13411948212683
      • type: cos_sim_f1 value: 86.80521991300147
      • type: cos_sim_precision value: 84.00374181478017
      • type: cos_sim_recall value: 89.8
      • type: dot_accuracy value: 99.67920792079208
      • type: dot_ap value: 89.27277565444479
      • type: dot_f1 value: 83.9276990718124
      • type: dot_precision value: 82.04393505253104
      • type: dot_recall value: 85.9
      • type: euclidean_accuracy value: 99.74257425742574
      • type: euclidean_ap value: 93.17993008259062
      • type: euclidean_f1 value: 86.69396110542476
      • type: euclidean_precision value: 88.78406708595388
      • type: euclidean_recall value: 84.7
      • type: manhattan_accuracy value: 99.74257425742574
      • type: manhattan_ap value: 93.14413755550099
      • type: manhattan_f1 value: 86.82483594144371
      • type: manhattan_precision value: 87.66564729867483
      • type: manhattan_recall value: 86
      • type: max_accuracy value: 99.74356435643564
      • type: max_ap value: 93.17993008259062
      • type: max_f1 value: 86.82483594144371
    • task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics:
      • type: v_measure value: 57.525863806168566
    • task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics:
      • type: v_measure value: 32.68850574423839
    • task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics:
      • type: map value: 49.71580650644033
      • type: mrr value: 50.50971903913081
    • task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics:
      • type: cos_sim_pearson value: 29.152190498799484
      • type: cos_sim_spearman value: 29.686180371952727
      • type: dot_pearson value: 27.248664793816342
      • type: dot_spearman value: 28.37748983721745
    • task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics:
      • type: map_at_1 value: 0.20400000000000001
      • type: map_at_10 value: 1.6209999999999998
      • type: map_at_100 value: 9.690999999999999
      • type: map_at_1000 value: 23.733
      • type: map_at_3 value: 0.575
      • type: map_at_5 value: 0.885
      • type: mrr_at_1 value: 78
      • type: mrr_at_10 value: 86.56700000000001
      • type: mrr_at_100 value: 86.56700000000001
      • type: mrr_at_1000 value: 86.56700000000001
      • type: mrr_at_3 value: 85.667
      • type: mrr_at_5 value: 86.56700000000001
      • type: ndcg_at_1 value: 76
      • type: ndcg_at_10 value: 71.326
      • type: ndcg_at_100 value: 54.208999999999996
      • type: ndcg_at_1000 value: 49.252
      • type: ndcg_at_3 value: 74.235
      • type: ndcg_at_5 value: 73.833
      • type: precision_at_1 value: 78
      • type: precision_at_10 value: 74.8
      • type: precision_at_100 value: 55.50000000000001
      • type: precision_at_1000 value: 21.836
      • type: precision_at_3 value: 78
      • type: precision_at_5 value: 78
      • type: recall_at_1 value: 0.20400000000000001
      • type: recall_at_10 value: 1.894
      • type: recall_at_100 value: 13.245999999999999
      • type: recall_at_1000 value: 46.373
      • type: recall_at_3 value: 0.613
      • type: recall_at_5 value: 0.991
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (sqi-eng) config: sqi-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 95.89999999999999
      • type: f1 value: 94.69999999999999
      • type: precision value: 94.11666666666667
      • type: recall value: 95.89999999999999
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (fry-eng) config: fry-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 68.20809248554913
      • type: f1 value: 63.431048720066066
      • type: precision value: 61.69143958161298
      • type: recall value: 68.20809248554913
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (kur-eng) config: kur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 71.21951219512195
      • type: f1 value: 66.82926829268293
      • type: precision value: 65.1260162601626
      • type: recall value: 71.21951219512195
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (tur-eng) config: tur-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.2
      • type: f1 value: 96.26666666666667
      • type: precision value: 95.8
      • type: recall value: 97.2
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (deu-eng) config: deu-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 99.3
      • type: f1 value: 99.06666666666666
      • type: precision value: 98.95
      • type: recall value: 99.3
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (nld-eng) config: nld-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 97.39999999999999
      • type: f1 value: 96.63333333333333
      • type: precision value: 96.26666666666668
      • type: recall value: 97.39999999999999
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ron-eng) config: ron-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 96
      • type: f1 value: 94.86666666666666
      • type: precision value: 94.31666666666668
      • type: recall value: 96
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ang-eng) config: ang-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 47.01492537313433
      • type: f1 value: 40.178867566927266
      • type: precision value: 38.179295828549556
      • type: recall value: 47.01492537313433
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (ido-eng) config: ido-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 86.5
      • type: f1 value: 83.62537480063796
      • type: precision value: 82.44555555555554
      • type: recall value: 86.5
    • task: type: BitextMining dataset: type: mteb/tatoeba-bitext-mining name: MTEB Tatoeba (jav-eng) config: jav-eng split: test revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553 metrics:
      • type: accuracy value: 80.48780487804879
      • type: f1 value: 75.45644599303138
      • type: precision value: 73.37398373983739
      • type: recall value: 80.48780487804879
    • task: type: BitextMining dataset:

[Content truncated...]

📝 Limitations & Considerations

  • Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • FNI scores are relative rankings and may change as new models are added.
  • License Unknown: Verify licensing terms before commercial use.
  • Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__intfloat__multilingual_e5_large,
  author = {intfloat},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/intfloat/multilingual-e5-large}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
intfloat. (2026). undefined [Model]. Free2AITools. https://huggingface.co/intfloat/multilingual-e5-large
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseℹ️ Verify with original source

🛡️ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--intfloat--multilingual-e5-large
author
intfloat
tags
sentence-transformerspytorchonnxsafetensorsopenvinoxlm-robertamtebsentence transformerssentence-similarityfeature-extractionmultilingualafamarasazbebgbnbrbscacscydadeeleneoeseteufafifrfygagdglguhahehihrhuhyidisitjajvkakkkmknkokukylaloltlvmgmkmlmnmrmsmynenlnoomorpaplpsptrorusasdsiskslsosqsrsusvswtatethtltrugukuruzvixhyizharxiv:2402.05672arxiv:2108.08787arxiv:2104.08663arxiv:2210.07316license:mitmodel-indextext-embeddings-inferenceendpoints_compatibledeploy:azureregion:us

⚙️ Technical Specs

architecture
XLMRobertaModel
params billions
0.56
context length
4,096
vram gb
1.7
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
1,095
downloads
3,338,259

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)