🧠

gemma-3-270m

by google Model ID: hf-model--google--gemma-3-270m
FNI 0.8
Top 66%
🔗 View Source
Audited 0.8 FNI Score
Tiny 0.27B Params
4k Context
Hot 70.8K Downloads
8G GPU ~2GB Est. VRAM

⚡ Quick Commands

đŸĻ™ Ollama Run
ollama run gemma-3-270m
🤗 HF Download
huggingface-cli download google/gemma-3-270m
đŸ“Ļ Install Lib
pip install -U transformers
📊

Engineering Specs

⚡ Hardware

Parameters
0.27B
Architecture
Gemma3ForCausalLM
Context Length
4K
Model Size
1.6GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~1.5GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

đŸ•¸ī¸ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

đŸ”Ŧ

đŸ”Ŧ Research & Data

📄CITES
2503.19786paper

Research Paper

→
📄CITES
1905.07830paper

Research Paper

→
📄CITES
1905.10044paper

Research Paper

→
📄CITES
1911.11641paper

Research Paper

→
📄CITES
1705.03551paper

Research Paper

→
📄CITES
1911.01547paper

Research Paper

→

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

đŸ”ŦTechnical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

⚡ Quick Commands

đŸĻ™ Ollama Run
ollama run gemma-3-270m
🤗 HF Download
huggingface-cli download google/gemma-3-270m
đŸ“Ļ Install Lib
pip install -U transformers
đŸ–Ĩī¸

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
đŸ’ģ Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
đŸ—ī¸ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
â„šī¸

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

Neural Fact Sheet: gemma-3-270m

[!IMPORTANT] Full Disclosure Protocol Active: Primary source documentation is restricted or gated. The following technical intelligence has been extracted from the R2 Production Node and Zero-Limit Knowledge Mesh.

📊 Core Architecture

  • Parameter Scale: 0.27B
  • Neural Architecture: Gemma3ForCausalLM
  • Inference Efficiency: 0.8/100 (FNI Logic Score)
  • License Profile: Proprietary/Restricted

âš™ī¸ Technical Capabilities

  • Neural Context Window: 4k tokens
  • Memory Footprint: ~2GB (Q4) estimated VRAM
  • Pipeline Origin: Standard AI
  • Safety Status: Model utilizes developer-defined safety filters.

🚀 Strategic Recommendations

  1. Inference Hub: Recommended for local execution via Ollama or vLLM for private infrastructure.
  2. Context Limits: Optimal performance is maintained within the first 4k tokens of input.
  3. Hardware Alignment: Ideal for hardware with at least ~2GB (Q4) of high-speed video memory.

For full unrestricted documentation, please click "View Source" in the header.

ZEN MODE â€ĸ README

âš ī¸ Incomplete Data

Some information about this model is not available. Use with Caution - Verify details from the original source before relying on this data.

View Original Source →

📝 Limitations & Considerations

  • â€ĸ Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • â€ĸ VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • â€ĸ FNI scores are relative rankings and may change as new models are added.
  • ⚠ License Unknown: Verify licensing terms before commercial use.
  • â€ĸ Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__google__gemma_3_270m,
  author = {google},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/google/gemma-3-270m}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
google. (2026). undefined [Model]. Free2AITools. https://huggingface.co/google/gemma-3-270m
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseâ„šī¸ Verify with original source

đŸ›Ąī¸ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--google--gemma-3-270m
author
google
tags
transformerssafetensorsgemma3_texttext-generationgemma3gemmagooglearxiv:2503.19786arxiv:1905.07830arxiv:1905.10044arxiv:1911.11641arxiv:1705.03551arxiv:1911.01547arxiv:1907.10641arxiv:2311.07911arxiv:2311.12022arxiv:2411.04368arxiv:1904.09728arxiv:1903.00161arxiv:2009.03300arxiv:2304.06364arxiv:2103.03874arxiv:2110.14168arxiv:2108.07732arxiv:2107.03374arxiv:2403.07974arxiv:2305.03111arxiv:2405.04520arxiv:2210.03057arxiv:2106.03193arxiv:1910.11856arxiv:2502.12404arxiv:2502.21228arxiv:2404.16816arxiv:2104.12756arxiv:2311.16502arxiv:2203.10244arxiv:2404.12390arxiv:1810.12440arxiv:1908.02660arxiv:2310.02255arxiv:2312.11805license:gemmatext-generation-inferenceendpoints_compatibleregion:us

âš™ī¸ Technical Specs

architecture
Gemma3ForCausalLM
params billions
0.27
context length
4,096
vram gb
1.5
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 0.8GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
920
downloads
70,792

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)