🧠

deepseek-v3.2-speciale

by deepseek-ai Model ID: hf-model--deepseek-ai--deepseek-v3.2-speciale
FNI 7.4
Top 67%
🔗 View Source
Audited 7.4 FNI Score
Massive 685.4B Params
4k Context
9.3K Downloads
H100+ ~517GB Est. VRAM

Quick Commands

🤗 HF Download
huggingface-cli download deepseek-ai/deepseek-v3.2-speciale
📦 Install Lib
pip install -U transformers
📊

Engineering Specs

Hardware

Parameters
685.4B
Architecture
DeepseekV32ForCausalLM
Context Length
4K
Model Size
642.1GB

🧠 Lifecycle

Library
-
Precision
float16
Tokenizer
-

🌐 Identity

Source
HuggingFace
License
Open Access
💾

Est. VRAM Benchmark

~516.5GB

Analyze Hardware

* Technical estimation for FP16/Q4 weights. Does not include OS overhead or long-context batching. For Technical Reference Only.

🕸️ Neural Mesh Hub

Interconnecting Research, Data & Ecosystem

📈 Interest Trend

--

* Real-time activity index across HuggingFace, GitHub and Research citations.

No similar models found.

🔬Technical Deep Dive

Full Specifications [+]
---

🚀 What's Next?

Quick Commands

🤗 HF Download
huggingface-cli download deepseek-ai/deepseek-v3.2-speciale
📦 Install Lib
pip install -U transformers
🖥️

Hardware Compatibility

Multi-Tier Validation Matrix

Live Sync
🎮 Compatible

RTX 3060 / 4060 Ti

Entry 8GB VRAM
🎮 Compatible

RTX 4070 Super

Mid 12GB VRAM
💻 Compatible

RTX 4080 / Mac M3

High 16GB VRAM
🚀 Compatible

RTX 3090 / 4090

Pro 24GB VRAM
🏗️ Compatible

RTX 6000 Ada

Workstation 48GB VRAM
🏭 Compatible

A100 / H100

Datacenter 80GB VRAM
ℹ️

Pro Tip: Compatibility is estimated for 4-bit quantization (Q4). High-precision (FP16) or ultra-long context windows will significantly increase VRAM requirements.

README

7,192 chars • Full Disclosure Protocol Active

ZEN MODE • README

DeepSeek-V3.2: Efficient Reasoning & Agentic AI

DeepSeek-V3

Technical Report👁️

Introduction

We introduce DeepSeek-V3.2, a model that harmonizes high computational efficiency with superior reasoning and agent performance. Our approach is built upon three key technical breakthroughs:

  1. DeepSeek Sparse Attention (DSA): We introduce DSA, an efficient attention mechanism that substantially reduces computational complexity while preserving model performance, specifically optimized for long-context scenarios.
  2. Scalable Reinforcement Learning Framework: By implementing a robust RL protocol and scaling post-training compute, DeepSeek-V3.2 performs comparably to GPT-5. Notably, our high-compute variant, DeepSeek-V3.2-Speciale, surpasses GPT-5 and exhibits reasoning proficiency on par with Gemini-3.0-Pro.
    • Achievement: 🥇 Gold-medal performance in the 2025 International Mathematical Olympiad (IMO) and International Olympiad in Informatics (IOI).
  3. Large-Scale Agentic Task Synthesis Pipeline: To integrate reasoning into tool-use scenarios, we developed a novel synthesis pipeline that systematically generates training data at scale. This facilitates scalable agentic post-training, improving compliance and generalization in complex interactive environments.

We have also released the final submissions for IOI 2025, ICPC World Finals, IMO 2025 and CMO 2025, which were selected based on our designed pipeline. These materials are provided for the community to conduct secondary verification. The files can be accessed at assets/olympiad_cases.

Chat Template

DeepSeek-V3.2 introduces significant updates to its chat template compared to prior versions. The primary changes involve a revised format for tool calling and the introduction of a "thinking with tools" capability.

To assist the community in understanding and adapting to this new template, we have provided a dedicated encoding folder, which contains Python scripts and test cases demonstrating how to encode messages in OpenAI-compatible format into input strings for the model and how to parse the model's text output.

A brief example is illustrated below:

import transformers
# encoding/encoding_dsv32.py
from encoding_dsv32 import encode_messages, parse_message_from_completion_text

tokenizer = transformers.AutoTokenizer.from_pretrained("deepseek-ai/DeepSeek-V3.2")

messages = [
    {"role": "user", "content": "hello"},
    {"role": "assistant", "content": "Hello! I am DeepSeek.", "reasoning_content": "thinking..."},
    {"role": "user", "content": "1+1=?"}
]
encode_config = dict(thinking_mode="thinking", drop_thinking=True, add_default_bos_token=True)

# messages -> string
prompt = encode_messages(messages, **encode_config)
# Output: "<|begin▁of▁sentence|><|User|>hello<|Assistant|>Hello! I am DeepSeek.<|end▁of▁sentence|><|User|>1+1=?<|Assistant|>"

# string -> tokens
tokens = tokenizer.encode(prompt)
# Output: [0, 128803, 33310, 128804, 128799, 19923, 3, 342, 1030, 22651, 4374, 1465, 16, 1, 128803, 19, 13, 19, 127252, 128804, 128798]

Important Notes:

  1. This release does not include a Jinja-format chat template. Please refer to the Python code mentioned above.
  2. The output parsing function included in the code is designed to handle well-formatted strings only. It does not attempt to correct or recover from malformed output that the model might occasionally generate. It is not suitable for production use without robust error handling.
  3. A new role named developer has been introduced in the chat template. This role is dedicated exclusively to search agent scenarios and is designated for no other tasks. The official API does not accept messages assigned to developer.

How to Run Locally

The model structure of DeepSeek-V3.2 and DeepSeek-V3.2-Speciale are the same as DeepSeek-V3.2-Exp. Please visit DeepSeek-V3.2-Exp repo for more information about running this model locally.

Usage Recommendations:

  1. For local deployment, we recommend setting the sampling parameters to temperature = 1.0, top_p = 0.95.
  2. Please note that the DeepSeek-V3.2-Speciale variant is designed exclusively for deep reasoning tasks and does not support the tool-calling functionality.

License

This repository and the model weights are licensed under the MIT License.

Citation

@misc{deepseekai2025deepseekv32,
      title={DeepSeek-V3.2: Pushing the Frontier of Open Large Language Models}, 
      author={DeepSeek-AI},
      year={2025},
}

Contact

If you have any questions, please raise an issue or contact us at [email protected].

📝 Limitations & Considerations

  • Benchmark scores may vary based on evaluation methodology and hardware configuration.
  • VRAM requirements are estimates; actual usage depends on quantization and batch size.
  • FNI scores are relative rankings and may change as new models are added.
  • License Unknown: Verify licensing terms before commercial use.
  • Source: Unknown
📜

Cite this model

Academic & Research Attribution

BibTeX
@misc{hf_model__deepseek_ai__deepseek_v3.2_speciale,
  author = {deepseek-ai},
  title = {undefined Model},
  year = {2026},
  howpublished = {\url{https://huggingface.co/deepseek-ai/deepseek-v3.2-speciale}},
  note = {Accessed via Free2AITools Knowledge Fortress}
}
APA Style
deepseek-ai. (2026). undefined [Model]. Free2AITools. https://huggingface.co/deepseek-ai/deepseek-v3.2-speciale
🔄 Daily sync (03:00 UTC)

AI Summary: Based on Hugging Face metadata. Not a recommendation.

📊 FNI Methodology 📚 Knowledge Baseℹ️ Verify with original source

🛡️ Model Transparency Report

Verified data manifest for traceability and transparency.

100% Data Disclosure Active

🆔 Identity & Source

id
hf-model--deepseek-ai--deepseek-v3.2-speciale
author
deepseek-ai
tags
transformerssafetensorsdeepseek_v32text-generationbase_model:deepseek-ai/deepseek-v3.2-exp-baselicense:mitendpoints_compatiblefp8region:us

⚙️ Technical Specs

architecture
DeepseekV32ForCausalLM
params billions
685.4
context length
4,096
vram gb
516.5
vram is estimated
true
vram formula
VRAM ≈ (params * 0.75) + 2GB (KV) + 0.5GB (OS)

📊 Engagement & Metrics

likes
573
downloads
9,310

Free2AITools Constitutional Data Pipeline: Curated disclosure mode active. (V15.x Standard)